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ABSTRACT

This dissertation solves the collision avoidance problem for single- and multi-robot

systems where dynamic effects are significant. In many robotic systems (e.g., highly maneu-

verable and agile unmanned aerial vehicles) the dynamics cannot be ignored and collision

avoidance schemes based on kinematic models can result in collisions or provide limited

performance, especially at high operating speeds. Herein, real-time, model-based collision

avoidance algorithms that explicitly consider the robots’ dynamics and perform real-time

input changes to alter the trajectory and steer the robot away from potential collisions

are developed, implemented, and verified in simulations and physical experiments. Such

algorithms are critical in applications where a high degree of autonomy and performance

are needed, for example in robot-assisted first response where aerial and/or mobile ground

robots are required to maneuver quickly through cluttered and dangerous environments in

search of survivors. Firstly, the research extends reciprocal collision avoidance to robots

with dynamics by unifying previous approaches to reciprocal collision avoidance under a

single, generalized representation using control obstacles. In fact, it is shown how velocity

obstacles, acceleration velocity obstacles, continuous control obstacles, and linear quadratic

regulator (LQR)-obstacles are special instances of the generalized framework. Furthermore,

an extension of control obstacles to general reciprocal collision avoidance for nonlinear,

nonhomogeneous systems where the robots may have different state spaces and different

nonlinear equations of motion from one another is described. Both simulations and physical

experiments are provided for a combination of differential-drive, differential-drive with

a trailer, and car-like robots to demonstrate that the approach is capable of letting a

nonhomogeneous group of robots with nonlinear equations of motion safely avoid collisions

at real-time computation rates. Secondly, the research develops a stochastic collision

avoidance algorithm for a tele-operated unmanned aerial vehicle (UAV) that considers

uncertainty in the robot’s dynamics model and the obstacles’ position as measured from

sensors. The model-based automatic collision avoidance algorithm is implemented on

a custom-designed quadcopter UAV system with on-board computation and the sensor

data are processed using a split-and-merge segmentation algorithm and an approximate



Minkowski difference. Flight tests are conducted to validate the algorithm’s capabilities for

providing tele-operated collision-free operation. Finally, a set of human subject studies are

performed to quantitatively compare the performance between the model-based algorithm,

the basic risk field algorithm (a variant on potential field), and full manual control. The

results show that the model-based algorithm performs significantly better than manual

control in both the number of collisions and the UAVs average speed, both of which are

extremely vital, for example, for UAV-assisted search and rescue applications. Compared to

the potential-field-based algorithm, the model-based algorithm allowed the pilot to operate

the UAV with higher average speeds.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Research Focus

The number of civil and commercial applications for ground, water, and aerial robots has

grown significantly over the past few decades due to advances in their hardware, as well as

their design, manufacturing, and the development of innovative algorithms for artificial intel-

ligence and autonomy. Applications include mapping [1], search and rescue [2], [3], precision

farming [4], space exploration [5], traffic management [6], environmental monitoring [7], and

even entertainment [8]. Despite recent advancements, one of the major challenges in mobile

ground, water, and aerial robotic systems is the task of avoiding collisions with surrounding

obstacles as robots travel and navigate through complex and unstructured environments.

Therefore, reliable, robust, and effective automatic collision avoidance algorithms are critical

in applications where a high degree of autonomy and performance are needed, for example

in robot-assisted first response where aerial and/or mobile ground robots are required to

maneuver quickly through cluttered and dangerous environments in search of survivors

following a natural disaster. Motivated by this need, the main focus of this dissertation is

solving the collision avoidance problem for single- and multi-robot systems where dynamic

effects are significant. In fact, the dynamic effects inherent in highly maneuverable and

agile systems such as unmanned aerial vehicles cannot be ignored when developing collision

avoidance schemes. For instance, collision avoidance schemes based on kinematic models can

result in collisions or provide limited performance, and thus such systems tend to operate

more conservatively compared to schemes that consider the robot’s dynamics. Herein,

real-time, model-based collision avoidance algorithms that explicitly consider the robots’

dynamics and perform real-time input changes to alter the trajectory and steer the robot

away from potential collisions are developed, implemented, and verified in simulations and

physical experiments. Developing innovative collision avoidance algorithms that enable

robots (including teams of robots) to better maneuver through challenging terrain with

greater efficiency, speed, and safety helps to broaden their application space.
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Collision avoidance algorithms can typically be classified as either a global or a local

method. Global methods work on a knowledge of all the obstacles in the workspace

and typically focus on optimizing some criterion and performing path refinement [9]–[13].

Other methods perform sampling provided knowledge of the environment and can also

perform rapid replanning in the presence of moving obstacles [14]–[17]. Local methods

are preferable in situations where the environment is not well characterized or known a

priori, and these algorithms typically run in real-time and avoid collisions with respect

to a limited, local obstacle definition, eliminating the need for a global obstacle map to

be provided or estimated. However, many early collision avoidance methods are developed

under the assumption that the robots’ dynamics can be ignored [18]–[29]. This is not a valid

assumption for highly dynamic robots, such as quadcopters or fixed-wing aircraft. When

these robots are operated at high speeds where their dynamic effects are not negligible, the

collision avoidance methods can still have collisions occur from approximating these robots

as kinematic agents. To fully utilize these robots’ capabilities, their dynamics should be

considered in avoiding collisions.

1.2 Research Objectives

The outcomes of this dissertation will advance the state-of-the-art for local collision

avoidance through the development of local collision avoidance algorithms that incorporate

the robots’ potentially nonlinear dynamics and perform real-time input changes to alter

the robots’ trajectories to avoid collisions. Specifically, algorithms for both multi- and

single-robot systems are developed through the following objectives:

1.2.1 Objective 1: Extend reciprocal collision avoidance
to robots with dynamics.

This objective focuses on creating a reciprocal collision avoidance algorithm for nonho-

mogeneous systems of robots with potentially nonlinear dynamics [30]. This objective was

completed by performing three tasks that are described as follows:

1.2.1.1 Develop control obstacles for linear,
homogeneous systems:

First, Control Obstacles for linear, homogeneous systems are developed. These systems

have been used in previous reciprocal collision avoidance algorithms. However, the previous

methods avoid collisions by selecting a new total relative input. Control Obstacles are de-

veloped in terms of a change in relative input. This difference in the input representation is
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significant for the generalization of previous methods and the extension to nonhomogeneous

systems with potentially nonlinear dynamics.

1.2.1.2 Generalize previous reciprocal collision
avoidance algorithms:

This task generalized previous reciprocal collision avoidance algorithms by showing how

their robot models are represented by Control Obstacles. It is shown how velocity obsta-

cles [20], acceleration velocity obstacles [31], continuous control obstacles [32], and linear

quadratic regulator (LQR)-obstacles [33] are special instances of the generalized framework.

These systems each use different models for the robots with varying complexities, ranging

from purely kinematic to general, linear dynamics. All of them can be represented as

Control Obstacles with the proper selection of terms as shown.

1.2.1.3 Extend control obstacles to nonlinear systems:

This task extended Control Obstacles for use with nonhomogeneous systems of robots

with possibly nonlinear dynamics. By an approximation of the robots’ trajectories through

a first-order Taylor expansion about their current inputs, multiple robots with different,

nonlinear dynamics can avoid collisions.

1.2.2 Objective 2: Develop a feedforward collision avoidance algorithm
for a tele-operated robot.

A feedforward (model-based) collision avoidance algorithm that performs well in real-

time operation for tele-operation by a human operator is developed [34]–[37]. This objective

is completed by performing three tasks that are described as follows:

1.2.2.1 Develop stochastic collision avoidance algorithm:

This task completed the theoretical development of the algorithm for performing auto-

matic collision avoidance for tele-operated unmanned aerial vehicles [34], [35]. This algo-

rithm explicitly considers uncertainty in the motion model of the robot for the feedforward

prediction of the trajectory as well as the uncertainty in the location of the obstacles.

1.2.2.2 Implement in real time with onboard sensing:

The theoretical developments from [34], [35] are implemented on a custom-designed

quadcopter UAV system with on-board computation and sensing capabilities [36]. Sensor

data are processed using a split-and-merge segmentation algorithm with an approximate

Minkowski difference. Flight tests are conducted to validate the algorithm’s capabilities.
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1.2.2.3 Study impact of collision avoidance algorithms
on pilot performance:

The final task presents a set of human-subject studies that are performed to quantita-

tively compare the performance of pilots between the model-based algorithm of Obj. 1.2.2

and the basic risk field (a variation of the potential field [24]) and full manual control [37].

The human-subject study has been reviewed and approved by the University of Utah

Institutional Review Board.

Additional details related to the two objectives are presented next.

1.3 Multirobot Systems: Reciprocal Collision Avoidance

When multiple robots share a common workspace, collisions must be avoided between

the robots as well as between the obstacles in the environment. Early approaches involved

using algorithms developed for single-robot collision avoidance where each robot assumes

every other robot is a passive obstacle in the environment. However, such approaches can

be insufficient when the robot encounters other robots that also actively make decisions

based on their surroundings: considering them as moving obstacles overlooks the fact that

they react to the robot in the same way as the robot reacts to them, and inherently causes

suboptimal and oscillatory motion [38], [39].

This has lead to the development of reciprocal collision avoidance techniques, which

specifically account for the reactive nature of the other robots without relying on coordina-

tion or communication among robots. The earliest approaches were direct extensions of Ve-

locity Obstacles [20], in which each robot is given half the responsibility of avoiding pairwise

collisions [39], [40]. Since this approach only applies to robots with very simple equations

of motion that allow the robots to change their velocity instantaneously, most subsequent

research on the topic has focused on extending the approach to robots with more complex

dynamics constraints, such as differential-drive [41], [42], car-like [43], double-integrator

[31], [44], arbitrary-degree integrator [32], and linear quadratic regulator (LQR)-controlled

[33] robots. A major limitation of these approaches, though, is that all robots are assumed

to have exactly the same equations of motion, i.e., they apply to homogeneous systems only.

Moreover, in all of these approaches the assumed equations of motion are linear, as these

approaches rely on the ability to express the relative motion of pairs of robots in terms of the

relative control input (i.e., the difference between the control inputs) of the robots. Hence,

they do not apply to nonhomogeneous or nonlinear systems, where robots have different

and/or nonlinear equations of motion, which limits their applicability on real-world robots.

The reciprocal collision avoidance algorithm in this dissertation advances the previous work
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by developing Control Obstacles for systems of robots that can have different, potentially

nonlinear dynamics [30]. Control Obstacles work in the space of changes in input while

Velocity Obstacles work in the space of absolute velocities. These Control Obstacles are

shown to be a generalization of the previous reciprocal collision avoidance methods and their

extension to nonlinear systems is shown in both simulation and real-world experiments.

1.4 Single-Robot Systems: Automatic Collision Avoidance
for Teleoperation

In the aforementioned applications such as search and rescue or inspection of hazardous

locations, a pilot or operator of a robot such as an unmanned aerial vehicle (UAV) must

make high-level decisions about where to fly the vehicle in potentially unknown indoor

environments, and simultaneously ensure that the vehicle does not crash into obstacles,

walls, floors and ceilings. UAVs can be difficult to fly even for trained operators, partic-

ularly in indoor GPS-denied environments where the operator must navigate with limited

information, such as a live camera-feed from the vehicle.

To aid the human operator in such tasks, it would be beneficial to incorporate an

algorithm that lets the vehicle automatically perform collision avoidance, such that the

operator can focus their attention on global decision making. Whereas collision avoidance

systems such as those that can be found in modern automobiles warn the driver or even

override operator control as a last resort [45]–[48], this dissertation focuses on approaches

designed specifically so that the operator can rely on the collision avoidance system. Our

system ensures that collisions are avoided while maintaining the objective of the operator

by continually selecting a control input that is as close as possible to the operator’s control

input, resulting in an intuitive control interface. This is not unlike the concept of virtual

fixtures [49] that are commonly used in surgical robotics [50]–[54]. This dissertation develops

a feedforward collision avoidance algorithm for a tele-operated robot [35]–[37]. Given some

desired input, the potentially nonlinear dynamics of the robot can be propagated forward

in time to estimate the trajectory. If a collision is predicted to occur given the estimated

trajectory, the user’s input is updated in real time to avoid collision. The algorithm is

developed to consider both the uncertainty in the motion model of the robot and the

uncertainty in the sensing of the obstacles’ positions through a simplified Gaussian repre-

sentation [35]. The approach is validated with real-world implementation using on-board

sensing and computation [36]. Studies are also performed in simulation to quantify how a

pilot’s performance is improved when using the algorithm [37].
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1.5 Organization

This dissertation is organized as follows. Chapter 2 describes the work that extends

reciprocal collision avoidance to robots with dynamics. Chapter 3 presents the theoretical

work for the stochastic automatic collision avoidance algorithm for tele-operated UAVs

and shows simulation results. Chapter 4 describes the real-time, on-board implementation

and experimental verification of the stochastic automatic collision avoidance algorithm

for a custom-designed tele-operated UAV. The experimental system consists of on-board

computation and sensing, and flight experiments are presented to demonstrate the per-

formance of the algorithm. Chapter 5 deals with human subject studies to determine

quantitatively the impact on UAV-pilot performance when using the automatic collision

algorithm compared to full manual control and a potential-field-based method. Discussions

and future considerations are presented in Chapter 6, and finally conclusions are presented

in Chapter 7.
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CHAPTER 2

GENERALIZED RECIPROCAL

COLLISION AVOIDANCE

The work in this chapter completes Objective 1 of the research and it was published in

the International Journal of Robotics Research in 2015. The paper formalizes a generalized

representation of reciprocal collision avoidance. Previously, reciprocal collision avoidance

consisted of many approaches applied to specific equations of motion for a given robot

system. In this paper, these approaches are unified through Control Obstacles. It is also

shown how this approach can be extended to systems of robots with different, non-linear

equations of motion, which was previously not possible. The approach is verified both in

simulations and physical experiments. The reprint here is with permission.
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Generalized reciprocal collision avoidance

Daman Bareiss1 and Jur van den Berg2

Abstract

Reciprocal collision avoidance has become a popular area of research over recent years. Approaches have been devel-

oped for a variety of dynamic systems ranging from single integrators to car-like, differential-drive, and arbitrary, linear

equations of motion. In this paper, we present two contributions. First, we provide a unification of these previous

approaches under a single, generalized representation using control obstacles. In particular, we show how velocity

obstacles, acceleration velocity obstacles, continuous control obstacles, and LQR-obstacles are special instances of our

generalized framework. Secondly, we present an extension of control obstacles to general reciprocal collision avoidance

for non-linear, non-homogeneous systems where the robots may have different state spaces and different non-linear equa-

tions of motion from one another. Previous approaches to reciprocal collision avoidance could not be applied to such sys-

tems, as they use a relative formulation of the equations of motion and can, therefore, only apply to homogeneous, linear

systems where all robots have the same linear equations of motion. Our approach allows for general mobile robots to

independently select new control inputs while avoiding collisions with each other. We implemented our approach in simu-

lation for a variety of mobile robots with non-linear equations of motion: differential-drive, differential-drive with a trailer,

car-like, and hovercrafts. We also performed physical experiments with a combination of differential-drive, differential-

drive with a trailer, and car-like robots. Our results show that our approach is capable of letting a non-homogeneous

group of robots with non-linear equations of motion safely avoid collisions at real-time computation rates.

Keywords

Collision avoidance, multi-robot system, decentralized control, mobile robot navigation, motion control

1. Introduction

Collision avoidance is a fundamental problem in robotics.

The problem can generally be defined in the context of an

autonomous mobile robot navigating in an environment

with obstacles and/or other moving entities, where the robot

employs a continuous sensing-control cycle. In each cycle,

the robot must compute an action based on its local obser-

vations of the environment, such that it stays free of colli-

sions with the moving obstacles and the other robots, and

progresses towards a goal. Many works in robotics have

addressed the problem of collision avoidance with moving

obstacles (Fox et al., 1997; Fiorini and Shiller, 1998; Hsu

et al., 2002; Petti and Fraichard, 2005). Typically, these

approaches predict where the moving obstacles might be in

the future by extrapolating their observed trajectories, and

let the robot avoid collisions accordingly. Velocity obstacles

(VO) (Fiorini and Shiller, 1998) formalize this principle by

characterizing the set of velocities for the robot that result

in a collision at some future time. Continually selecting a

velocity outside of this set will then guarantee collision-free

navigation for the robot.

However, such approaches are insufficient when the

robot encounters other robots that also actively make deci-

sions based on their surroundings: considering them as

moving obstacles overlooks the fact that they react to the

robot in the same way the robot reacts to them, and inher-

ently causes suboptimal and oscillatory motion (Kluge and

Prassler, 2004; Van den Berg et al., 2008).

This has lead to the development of reciprocal collision

avoidance techniques, which specifically account for the

reactive nature of the other robots without relying on coor-

dination or communication among robots. The earliest

approaches were direct extensions of VO, in which each

robot is given half the responsibility of avoiding pairwise

collisions (Van den Berg et al., 2008, 2009). Since this
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approach only applies to robots with very simple dynamics

that allow the robots to change their velocity instanta-

neously, most subsequent research on the topic has focused

on extending the approach to robots with more complex

dynamic constraints, such as differential-drive (Alonso-

Mora et al., 2010; Snape et al., 2010), car-like (Alonso-

Mora et al., 2012), double-integrator (Lalish and

Morgansen, 2012; Van den Berg et al., 2012), arbitrary

integrator (Ruffli et al., 2013), and robots with linear quad-

ratic regulator (LQR) controllers (Bareiss and van den

Berg, 2013). A major limitation of these approaches

though is that all robots are assumed to have exactly the

same equations of motion, in other words, they apply to

homogeneous systems only. Moreover, in all these

approaches the assumed equations of motion are linear, as

these approaches rely on the ability to express the relative

motion of pairs of robots in terms of the relative control

input (i.e. the difference between the control inputs) of the

robots. Hence, they do not apply to non-homogeneous or

non-linear systems, where robots have different and/or

non-linear equations of motion, which limits their applic-

ability to real-world robots and in real-world applications.

In this paper, we address this shortcoming by presenting

a new reciprocal collision avoidance method with two main

contributions (see Table 1):

� First, we provide a unification of all previous

approaches to reciprocal collision avoidance under a

single, generalized representation using control obsta-

cles. We will show specifically that approaches such as

VO (Fiorini and Shiller, 1998), acceleration velocity

obstacles (AVO) (Van den Berg et al., 2012), continu-

ous control obstacles (CCO) (Ruffli et al., 2013), and

LQR-obstacles (Bareiss and van den Berg, 2013) are

each a special instance of our generalized framework.

Moreover, we will show that our formulation is gener-

ally applicable to all homogeneous systems with linear

equations of motion, and as such covers that entire

class of systems.
� Second, we present an extension of control obstacles to

reciprocal collision avoidance for general non-linear

and/or non-homogeneous systems where the robots

may have different state spaces and different non-linear

equations of motion. No previous approaches to

reciprocal collision avoidance could be applied to these

categories of systems, even though some previous work

has shown how specific instances of non-linear systems

can be turned into a linear system formulation to which

one of the previous approaches could be applied (see

the next section for a more thorough discussion).

We implemented our approach in simulation for a vari-

ety of mobile robots with non-linear equations of motion:

differential-drive, differential-drive with a trailer, car-like,

and hovercrafts. We also performed physical experiments

with a combination of differential-drive, differential-drive

with a trailer, and car-like robots. Our results show that our

approach is capable of letting a non-homogeneous group of

robots with non-linear equations of motion safely avoid col-

lisions at real-time computation rates.

The remainder of the paper is structured as follows.

Section 2 reviews previous approaches to reciprocal colli-

sion avoidance. Section 3 formally defines the problem of

reciprocal collision avoidance. Section 4 presents our gen-

eralized approach for homogeneous systems with linear

equations of motion using control obstacles. Section 5

shows how the previous reciprocal collision avoidance

approaches can be represented in our generalized approach.

In Section 6 we explore the potential of our approach to

non-homogeneous systems with non-linear equations of

motion. Section 7 presents our results and Section 8 sum-

marizes and concludes.

2. Previous work

One of the early developments in collision avoidance was

the velocity obstacle (VO) (Fiorini and Shiller, 1998). The

VO is defined as a cone in the velocity space based on rela-

tive positions and geometries which defines all relative

velocities which will result in a collision. To avoid a colli-

sion, the robot needs to select a new velocity that lies out-

side the VO.

The approach of the VO was initially developed for a

single active agent avoiding collisions with passive agents

or moving obstacles. The approach was extended to per-

form reciprocal collision avoidance between two active

agents in reciprocal velocity obstacles (RVO) (Van den

Berg et al., 2008). In RVO, the concept of the VO is used

but each robot must take half the responsibility to avoid

collisions rather than the entire responsibility as in the VO

algorithm. However, as the number of agents increases

RVO tends to result in oscillatory motions. Optimal reci-

procal velocity obstacles (ORCA) (Van den Berg et al.,

2009) was developed to address this issue. In ORCA, the

set of safe velocities is evenly divided between two robots

by defining halfplanes of safe, possible velocities. These

halfplanes are defined with respect to the VO and are the

sets of individual velocities for two robots that result in

relative velocities outside of the VO, thus avoiding colli-

sions. Each robot selects a new velocity from the set of

Table 1. Classification of reciprocal collision avoidance approaches.

Homogeneous Non-homogeneous

Linear VO/ORCA Control obstacles
AVO
CCO
LQR–obstacles

Control obstacles
Non-linear Control obstacles Control obstacles
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safe, possible velocities that is as close as possible to a tar-

get velocity.

These algorithms all have the limitation that they are

only guaranteed to provide safe, collision-free motion for

robots with the linear equation of motion _p= v where the

position p defines the state and the velocity v defines the

control input. This model is not practical for most real-

world robots. Several extensions of these earlier

approaches were introduced to address this issue and

present reciprocal collision avoidance for more compli-

cated dynamics. AVO (Van den Berg et al., 2012) were

defined for robots with states consisting of position and

velocity x = [pTvT]T with acceleration control inputs u =

k(vH 2 v) where k is some proportional gain, vH is some

target velocity, and v is the current velocity. The

approach in AVO was further generalized to apply to

arbitrary-degree integrators through CCO by Ruffli et al.

(2013). Further extension was provided by Bareiss and

van den Berg (2013) for robots with arbitrary, homoge-

neous, linear equations of motion.

Table 1 summarizes the types of multi-robot system that

have been considered in reciprocal collision avoidance

based on a high-level categorization along two axes:

� Homogeneous versus non-homogeneous systems:

Homogeneous teams of robots consist of robots that all

have exactly the same state space and equations of

motion, for example all robots are single-integrators

with directly controllable velocity. Non-homogeneous

teams of robots on the other hand may include robots

with different state spaces and equations of motion, for

example a single-integrator interacting with a double-

integrator (a robot with directly controllable

acceleration).
� Linear versus non-linear equations of motion: For sys-

tems with linear equations of motion, the derivative of

the state is a linear function of the state and the control

input, as is the case with single and double integrators

for example. Differential-drive and car-like robots are

examples of systems with non-linear equations of

motion.

It turns out that all existing approaches to reciprocal col-

lision avoidance are limited to specific instances of homo-

geneous systems with linear equations of motion, as these

approaches are reliant upon the ability to express the equa-

tions of motion in terms of their current relative states and

relative control inputs, which is generally not possible for

non-homogeneous and/or non-linear systems. Our approach

extends this previous work and is generally applicable

across this two-dimensional spectrum.

There have been some developments for reciprocal col-

lision avoidance for non-linear equations of motion.

Reciprocal collision avoidance for differential-drive robots

was performed by Snape et al. (2010) where the center of

the robots was shifted and the bounding radius was

increased in order to model the robots as holonomic with

linear equations of motion. In Alonso-Mora et al. (2010),

non-holonomic ORCA (NH-ORCA) was developed. NH-

ORCA increases the radius of the robot based on the error

in a tracking controller which allows non-holonomic robots

to track holonomic trajectories as demonstrated for

differential-drive robots. The NH-ORCA algorithm is

applied to car-like robots by Alonso-Mora et al. (2012). In

Van den Berg et al. (2012) it was shown how car-like

robots can be represented as double integrators, to which

AVO can be applied. These approaches all have in common

that they transform specific instances of non-linear equa-

tions of motion into a linear formulation to which recipro-

cal collision avoidance can be applied. Our approach, in

contrast, will apply directly to any general non-linear equa-

tions of motion.

Our work has some similarities to non-linear velocity

obstacles (NLVO) (Shiller et al., 2001) and generalized

velocity obstacles (GVO) (Wilkie et al., 2009). The NLVO

algorithm expands the VO algorithm to allow for a robot

with linear equations of motion to avoid collisions with

passive obstacles moving with known, possibly non-linear

trajectories. The self-motion velocity obstacle (SMVO) is

another approach that utilizes the NLVO while considering

more general robot trajectories (Shiller et al., 2008). The

GVO algorithm does basically the opposite of the NLVO

by defining a ‘‘control obstacle’’ for robots with non-linear

equations of motion to avoid a passive obstacle moving

along a linear trajectory. This approach samples the space

of possible control inputs to determine if a collision will

occur in the future. Neither of these approaches can be tri-

vially extended to reciprocal collision avoidance.

3. Problem statement

3.1. Notation

We use the following notational conventions in this paper.

Vector sets A are denoted using calligraphics, vectors a are

denoted using boldface, matrices A are denoted using

upper-case italics, and scalars a are denoted by lower-case

italics. Scalar and matrix multiplication, and Minkowski

sums of sets, are defined as

aX = faxjx 2 Xg, AX = fAxjx 2 Xg
X � Y= fx+ yjx 2 X , y 2 Yg

It follows that A� fag denotes a translation of a set A
by a vector a.

3.2. Problem setup

We consider multiple mobile robots sharing a common

workspace where the robots have potentially different, non-

linear equations of motion and state spaces. Let the state
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space of robot i be X i � R
ni . Let Rd be the robots’ physi-

cal workspace, where d = 2 or d = 3 typically. We assume

the position pi 2 R
d of robot i can be derived from its state

xi 2 X i by some potentially non-linear projection function

qi 2 X i ! R
d :

pi(t)= qi(xi(t)) ð1Þ

Let Oi � R
d be the geometry of robot i relative to its

position. We assume that the geometric shape of the robot

is determined only by its position and not its orientation, in

other words, it is rotationally invariant. More specifically,

we consider the robot geometry as its bounding circle simi-

lar to the approach in the original VO (Fiorini and Shiller,

1998). This is a reasonable assumption for most mobile

robots that greatly simplifies the development of our

approach. See Giese et al. (2014) for work specifically

including the orientation dimension in reciprocal collision

avoidance.

We further assume that the dimension of the control

input is equal to the dimension of the workspace, where

U i � R
d is the valid control input space, which is assumed

to be convex. Let the continuous-time equation of motion

for robot i be given by a potentially non-linear function

fi 2 X i ×U i ! R
ni :

_xi(t)= fi(xi(t), ui(t)) ð2Þ

where xi(t) is the state and ui(t) is the control input at time t

for robot i. It is important to remember that X i, qi, and fi

may be different for every robot i.

Given a current state xi = xi(0) of robot i and some con-

stant control input ui = ui(0), the state of the robot at a

given time t . 0 is given by

xi(t)= gi(t, xi, ui) ð3Þ

where gi 2 R×X i ×U i ! X i is the solution to the differ-

ential equation of equation (2), which can be obtained

numerically, for example through a Runge–Kutta

integration.

3.3. Problem statement

The problem of reciprocal collision avoidance we are

addressing can now be defined as having each robot i inde-

pendently compute a change Dui 2 U i � f�uig of its cur-

rent control input ui given the current states xj and control

inputs uj of all other robots j6¼i, such that the robots do not

collide within a time horizon t:

8(j 6¼ i, 0� t\t) :: (Oi � fqi(gi(t, xi, ui + Dui))g)\
(Oj � fqj(gj(t, xj, uj + Duj))g)= ;

ð4Þ

3.4. Challenges and assumptions

The challenge of reciprocal collision avoidance is that

robot i does not know the change in control input Duj the

other robots are going to choose. Therefore, we rely on the

assumption that all robots use the same algorithm in order

to select their change of control input. In this paper we dis-

cuss the design of an algorithm to compute changes in con-

trol inputs such that collision avoidance is achieved. In

doing so, we make the following assumptions:

(I) When computing a control input, we assume that it

remains constant over finite time t into the future.

The actual sensing-action cycle is much shorter than

t and a new control input is computed in every

sensing-action cycle.

(II) We assume that the robots can fully observe each oth-

er’s state and control input.

(III) We assume that the robots have the same type of con-

trol input, for example desired velocity, which is equal

in dimension to the dimension of the workspace.

4. Generalized reciprocal collision avoidance

for homogeneous, linear equations of motion

In this section we introduce the general concept of control

obstacles that applies to general linear and homogeneous

systems. The control obstacle generalizes all previous

approaches on reciprocal collision avoidance, as we will

show in Section 5. In Section 6 we present the extension to

non-linear, non-homogeneous systems.

4.1. Control obstacles

In this section, we consider a system of robots that all have

the same linear equations of motion, that is, a linear, homo-

geneous system. Equation (1) can be expressed for all

robots i in a linear, homogeneous system as

pi(t)= q(xi(t))= Cxi(t)+ d ð5Þ

where the matrix C 2 R
d × n and the vector d 2 R

d map a

robot’s state to its position and are identical for all robots.

Let the state space X i =X � R
n be identical for all

robots i. Equation (2) can be expressed for all robots i as

_xi(t)= f(xi(t), ui(t))= Axi(t)+ Bui(t)+ c ð6Þ

where A 2 R
n× n, B 2 R

n× d , and c 2 R
n.

Given a current state xi = xi(0) and a constant control

input ui = ui(0), solving the differential equation in equa-

tion (6) gives

xi(t)= g(t, xi, ui)= F(t)xi + G(t)ui + h(t) ð7Þ

where F(t) 2 R! R
n× n, G(t) 2 R! R

n× d , and

h(t) 2 R! R
n are identical for every robot and are given

as

F(t) G(t) h(t)
0 I 0

0 0 1

24 35= exp t

A B c

0 0 0

0 0 0

24 350@ 1A ð8Þ
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Remember that for homogeneous systems with linear

equations of motion, q, f, and g are the same for all robots.

A unique property for these systems is that

g(t, xi, ui)� g(t, xj, uj) = g(t, xi � xj, ui � uj)
= g(t, xij, uij)
= F(t)xij + G(t)uij + h(t)

ð9Þ

where xij = xi 2 xj and uij = ui 2 uj are the relative initial

states and relative control inputs, respectively. This prop-

erty has been exploited by all previous work on reciprocal

collision avoidance. However, it does not hold for homoge-

neous systems with non-linear equations of motion, non-

homogeneous systems with linear equations of motion, or

non-homogeneous systems with non-linear equations of

motion. We will discuss these cases in Section 6.

Substituting equation (7) into equation (5) for a given

control input ui + Dui, where ui is the current control

input and Dui is the change in control input, gives

pi(t)= p̂(t, xi, ui)+ J (t)Dui ð10Þ

where p̂(t, xi, ui) 2 R
d and J (t) 2 R

d × d are

p̂(t, xi, ui)= C(F(t)xi + G(t)ui + h(t))+ d ð11Þ

J (t)= CG(t) ð12Þ

Given equation (10), we now define the control obstacle

UOij for a robot i avoiding collisions with robot j. In order

for the robots to avoid collision, their relative position

pij(t) = pi(t) 2 pj(t) must remain outside of the Minkowski

sum of the robots’ geometries Oij =Oj ��Oi:

pij(t) 62 Oij ð13Þ

Substituting equation (10) into equation (13) and solving

for the relative change in control input Duij gives

p̂(t, xij, uij)+ J (t)Duij 62 Oij ) Duij 62 J (t)�1

(Oij � f�p̂(t, xij, uij)g)
ð14Þ

Equation (14) represents a constraint on the change in

relative control input Duij such that robots i and j do not

collide at time t. We define the control obstacle as the union

of equation (14) for all time t less than the time horizon t:

UOij =
[

0� t\t

J (t)�1(Oij � f�p̂(t, xij, uij)g) ð15Þ

In other words, a collision will not occur between robot

i and robot j within t time into the future when their rela-

tive change in control input Duij lies outside the control

obstacle:

Duij 62 UOij ð16Þ

The geometry of UOij can be seen as a union of copies

of the relative geometry Oij, each translated to

�p̂(t, xij, uij), that is, the nominal trajectory of robot j

relative to robot i, and then transformed by J21. If the geo-

metries of the robots are discs, UOij is hence a union of

ellipsoids.

4.2. Avoiding collisions with passive robots

For a passive robot or environmental object, we can assume

that Duj = 0. That is, we assume the other robot does not

change its control input. Avoiding collisions with that robot

or object can then be performed simply by selecting a

change in control input Dui outside the control obstacle:

Dui 62 UOij ð17Þ

For the case where it cannot be assumed that Duj = 0,

in other words, both robots are actively avoiding collisions,

reciprocal collision avoidance must be performed, which

we discuss next.

4.3. Reciprocal collision avoidance using control

obstacles

Equation (16) gives the constraint on the relative change in

control input Duij for two robots to avoid collisions. When

it cannot be assumed that Duj = 0, robot i has to consider

the change in control input Duj robot j is going to select in

order for robot i to select a safe change in control input Dui

for itself. The challenge is that Duj is unknown to robot i

and the robots are not allowed to communicate. Hence, our

approach is that robot i computes sets RCAij and RCAji of

possible safe changes of control inputs for robot i and robot

j, respectively, that satisfy the constraint

((RCAij \ ~Ui)��(RCAji \ ~Uj)) \ UOij = ; ð18Þ

where eUi =U i � f�uig is the set of feasible changes in

control input for robot i given the control input constraints.

If robot i selects a change in control input Dui from RCAij

and robot j selects a change in control input Duj from

RCAji, which each satisfy their respective control input

constraints, then it is guaranteed that Duij 62 UOij and the

robots will not collide within t time in the future. We will

let robot i compute RCAij and RCAji in such a way that if

robot j were to apply the same algorithm to its situation, it

would compute the same sets RCAji and RCAij. Robot i is

then free to choose any change in control input from the

set RCAij to avoid collisions with robot j.

There are infinitely many pairs of sets of changes in

control inputs RCAij and RCAji that satisfy equation (18).

Therefore, we choose to find a pair of sets that divides the

responsibility of avoiding collisions equally between both

robots. Let us define a convex set C of safe relative changes

in control inputs such that

C \ ~Uij

� �
\ UOij = ; ð19Þ

where ~Uij = ~Ui �� ~Uj represents the feasible relative

changes in control inputs. Any relative change in control
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input Duij that does not violate control input constraints

and that is within C, in other words any Duij 2 (C \ eUij),
will avoid collisions between robots i and j within t

time.

Since for convex sets it holds that X = 1
2
X � 1

2
X , the

set C can be ‘‘halved’’ to determine sets of safe changes in

control input for both robot i and robot j as

RCAij =
1

2
C, RCAji = �

1

2
C ð20Þ

where the desire to divide the responsibility for collision

avoidance equally between the two robots motivates halv-

ing of the set C for each robot. We will define the convex

set C more concretely below, but if it satisfies the condition

of equation (19), we can prove that our definition of RCAij

and RCAji in equation (20) satisfies our constraint on

RCAij and RCAji of equation (18):

((RCAij \ ~Ui)��(RCAji \ ~Uj)) \ UOij

=
1

2
C \ ~Ui

� �
�� � 1

2
C \ ~Uj

� �� �
\ UOij

� 1

2
C � 1

2
C

� �
\ ~Ui �� ~Uj

� �� �
\ UOij

= C \ ~Uij

� �
\ UOij

= ; ð21Þ

where we use the fact that

ðW \ XÞ � ðY \ ZÞ= ðW � YÞ \ ðW � ZÞ\
ðX � YÞ \ ðX � ZÞ
� ðW � YÞ \ ðX � ZÞ

What remains is choosing the convex set C of safe rela-

tive changes in control inputs. Ideally C should be the larg-

est set of safe relative changes in control input, but such a

set can be difficult to compute exactly. Therefore, we define

C to be the halfspace tangent to the convex hull of the set of

feasible relative control inputs that will result in a collision,

that is, CH(UOij \ ~Uij), at the point w on the convex hull’s

boundary closest to the origin:

w= argmin

u2∂CH(UOij\ eU ij)

uk k ð22Þ

C=
fuj(u� w) � w 	 0g if 0 2 CH(UOij \ eUij)

fuj(u� w) � w� 0g if 0 62 CH(UOij \ eUij)

(
ð23Þ

where ∂ refers to the boundary of a set. By construction,

this definition of C satisfies equation (19).

This is illustrated in Figure 1. The set of feasible relative

changes in control input eUij (i.e. those that adhere to control

input constraints) is represented by the light gray hexagon.

The dark gray region represents the convex hull of the inter-

section of the feasible relative changes in control input and

the control obstacle, that is, CH(UOij \ eUij). The set C is

shown located tangent to this convex hull at the point clo-

sest to the origin. Placing the set C at the closest point to

the origin represents the desire to keep the relative changes

in control input as small as possible and, therefore, allow

the robots to maintain their current, desired control input as

closely as possible.

Since C is a halfspace, it follows that RCAij and RCAji

are halfspaces as well. If the robots are currently on a colli-

sion course, that is, Duij 2 UOij, the vector w represents the

smallest relative change in control input required to avoid a

collision. Given that the two robots share the responsibility

for avoiding collisions equally, the sets RCAij and RCAji

are halfspaces located at 1
2
w and � 1

2
w from the origin of

their respective control input spaces, as shown in Figure 1.

It is important to note that each robot i and j can inde-

pendently compute their halfspacesRCAij andRCAji since

the construction of the control obstacle from robot j’s per-

spective UOji results in the same sets RCAji and RCAij

since UOij = � UOji.

If both robots desire to keep their changes in control

inputs as small as possible while ensuring they avoid colli-

sions, each robot selects a change in control input as

∆uij0

∆uij1

ij

ij

w ∆ui0

∆ui1

i
w/2 ∆uj0

∆uj1

j

-w/2

ij

ji

˜

˜

Fig. 1. On the left, a control obstacle UOij is given by its outline. The set of feasible relative changes in control input ~Uij (i.e. those

that adhere to the control input constraints) is shown as the light gray hexagon. The minimum change in relative control input required

to avoid collision is shown as the vector w which defines the position of the halfspace C. The vector w is defined as the closest point

to the origin outside the convex hull (dark gray region) of the intersection of the control obstacle and the feasible changes in control

input UOij \ ~Uij: Each robot constructs a set of safe changes in control input, RCAij for robot i and RCAji for robot j, at w/2 and 2w/

2 respectively as shown in the middle and right images.
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Dumin
i = argmin

Dui2RCAij

Duik k ð24Þ

Given the symmetry of RCAij and RCAji, it follows that

Dumin
j = � Dumin

i ð25Þ

We use this observation later in the extension of the reci-

procal collision avoidance approach to non-linear systems.

4.4. Avoiding collisions with multiple robots

A control obstacle is defined for pairwise collision avoid-

ance but can easily be extended to more than two robots

with an approach similar to Van den Berg et al. (2009).

Each robot i creates a control obstacle and determines its

set of safe potential changes in control input RCAij with

respect to every other robot j, as in Figure 2. After consid-

ering every robot j, the change in control input for robot i

is selected that is safe from all collisions:

Dui 2 ~Ui \
\
j6¼i

RCAij ð26Þ

where Dui can be found with a convex optimization method

in the d-dimensional space of control inputs similar to the

method by Van den Berg et al. (2009).

Given a preferred change in control input, the convex

optimization will result in a change in control input that is

as close as possible to some preferred input while not vio-

lating equation (26). However, there can be cases in which

the set of safe changes in control input may be empty, that

is, ~Ui \
T

j 6¼iRCAij = ;. When this occurs, a convex opti-

mization in a (d + 1)-dimensional space will select the

change of control input that will least violate the con-

straints. See Van den Berg et al. (2009) for full details.

This potentially results in a collision within t time if the

control inputs truly remain constant, but given that a new

control input is selected in each sensing-action cycle, in

practice this turns out to typically result in safe motion.

However, the fact that collision avoidance can only be theo-

retically guaranteed in some cases remains a limitation of

our approach.

5. Generalization of previous reciprocal

collision avoidance approaches

Above, we have developed a method for reciprocal collision

avoidance for a homogeneous system of multiple robots

with general, linear equations of motion. We did so through

a new method of control obstacles. Previous approaches of

reciprocal collision avoidance can be shown to be special

cases of control obstacles. As shown in the previous sec-

tions, the control obstacle is fully defined for a system if

given A, B, and c from equation (6) and C and d from equa-

tion (5). We will now show how previous methods of reci-

procal collision avoidance can be represented as control

obstacles using these terms.

5.1. VO

The VO algorithm assumes the robot’s equations of motion

are a single integrator kinematic model:

_p= v ð27Þ

where x = p and X � R
2 is the space of positions, u = v

and U � R
2 is the space of velocities. For equation 27 we

find

A = 0, B = I , c= 0, C = I , d= 0

Solving equation (7) for these, we find

F(t)= I , G(t)= tI , h(t)= 0

When Oij is a circle or sphere, the control obstacle is

equivalent to the VO translated by the negative of the cur-

rent relative input 2vij as in Figure 3. This discrepancy

arises from control obstacles being developed based on

changes in control input rather than the absolute control

input.

5.2. AVO

The AVO algorithm is presented by Van den Berg et al.

(2012) as an alternative to the VO. One of the major prob-

lems with the VO is the assumption that instantaneous

changes in velocity are possible. However, as this is not the

case for physical systems, the AVO algorithm was

developed.

In AVO, the robots have four state variables (the two-

dimensional position and velocity) x 2 R
4 and two control

inputs (the two-dimensional acceleration) u 2 R
2. The con-

trol inputs are driven by a proportional controller:

_v=
1

d
(vH � v) ð28Þ

where vH is the desired velocity, v is the current velocity,

and d is a controller parameter.

Integrating equation (28) twice to obtain the system’s

trajectory gives

Fig. 2. A scenario for a group of seven robots avoiding

collision. Robot 1 creates a safe set of changes in control inputs

RCA1j for every other robot j. The intersection of the union of

these planes and the space of possible changes of control input
~Uij is shown as CA, which is the set of changes in control input

that avoid collisions with every other robot while adhering to

control input constraints.
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v(t)= vH � e�t=d vH � v(0)
� �

ð29Þ

p(t)= p(0)� d(e�t=d � 1)v(0)+ t + d(e�t=d � 1)
� �

vH

ð30Þ

Hence, we can represent the AVO with a control obstacle

by choosing the state x = [pTvT]T, the control input u = vH,

and

A =
0 I

0 � 1
d

I

� 	
, B =

0
1
d

I

� 	
, c= 0

C = I 0½ 
, d= 0

Solving equation (7), we find

F(t)=
1 �d(e�t=d � 1)
0 e�t=d

� 	
, G(t)=

t + d(e�t=d � 1)
1� e�t=d

� 	
,

h(t)= 0

5.3. CCO

CCO (Ruffli et al., 2013) generalizes the previously men-

tioned AVO algorithm by defining the (n + 1)th derivative

of position as the low-level control input where

p(n + 1) = � cnp
(n) � . . .� c2€p+ c1(v

H � _p) ð31Þ

where the superscript (n) represents the nth derivative of the

term and vH is the target velocity that is a high-level control

input.

The low-level control input is an input given directly to

the robot which determines the next state through the equa-

tions of motion. The high-level control input abstracts the

low-level control input to velocity through a controller. This

abstraction to velocity as a control input is common in reci-

procal collision avoidance and we discuss its use in our

method in Section 6.1.

For example, controlling the jerk of a robot p(3) is shown

in full in Ruffli et al. (2013).

The state is x= ½pT _pT . . . (p(n))T
T and the control input

is u = vH. Solving for the state equation gives

A =

0 I 0

..

. . .
.

0 0 I

0 �c1I . . . �cnI

266664
377775, B =

0

..

.

0

c1

266664
377775 c= 0

C = I 0 . . . 0½ 
, d= 0

5.4. LQR-obstacles

LQR-obstacles by Bareiss and van den Berg (2013) provide

a method for reciprocal collision avoidance for homoge-

neous systems of robots with the same arbitrary linear equa-

tions of motion. The equations of motion of each robot are

_x= ~Ax+ ~Bu+ec ð32Þ

An LQR controller is used to obtain the low-level input

from the high-level input vH using the control law

u= � Lx+ EvH + ‘ ð33Þ

By substituting equation (33) into equation (32), the

closed-loop equations of motion are given as

_x= Ax+ BvH + c ð34Þ

where

A = ~A� ~BL,B = ~BE, c= ~B‘+ec ð35Þ

Along with equation (34), the control obstacle is fully

defined for a given C and d that extract the position from

the state, similar to equation (5).

6. Non-homogeneous, non-linear equations

of motion

The previous discussion defined a generalized method for

reciprocal collision avoidance using control obstacles UOij

for sets of robots with the same linear equations of motion.

We present the extension of these methods for robots in

x

y

ri

rj

vi

vj
Δvx

Δvy –pij–vij –pij–vij

rij

–v ij

Δvx

Δvy

rij
–p

ij/τ–vij

rij/τ

Fig. 3. Left: a pair of robots with equation of motion _p= v where their current velocities will lead to a collision course with each other.

Middle: an infinite time horizon control obstacle is given for the robot configuration on the left. As can be seen, the control obstacle

contains the origin, meaning that the robots will indeed collide if they continue with their current control input. Right: the same control

obstacle is shown, except now it is bounded by a finite time horizon t. This control obstacle is equivalent to the VO for the single-

integrator dynamics except it is shifted by the negative of the current relative velocity 2vij. This discrepancy between the control

obstacle and VO arises because the control obstacle is defined in terms of the change in velocity rather than the absolute velocity.
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non-homogeneous systems, that is, different types, with

possibly non-linear equations of motion.

Given the equations of motion of robots i and j (see

equation (2)), we can approximate the relative position pij(t)

given each robot’s current state xi and xj as well as constant

control inputs ui and uj through a first-order Taylor approx-

imation about the current control input:

pij(t)’qi½gi(t, xi, ui)
 � qj½gj(t, xj, uj)


+
∂(qi 8 gi)

∂ui

(t, xi, ui)Dui �
∂(qj 8 gj)

∂uj

(t, xj, uj)Duj

ð36Þ

In the spirit of equation (25), we make the assumption

that Dui’Duij/2 and Duj’2Duij/2 such that each robot is

required to take half the responsibility for avoiding pairwise

collisions. For this assumption to be realistic, we require

that the control input of both robots be of the same ‘‘type’’,

for example a desired velocity, which we will discuss in

Section 6.1. We can then re-write equation (36) as

pij(t)’p̂ij(t, xi, ui, xj, uj)+ Jij(t, xi, ui, xj, uj)Duij ð37Þ

where

p̂ij(t, xi, ui, xj, uj)= qi½gi(t, xi, ui)
 � qj½gj(t, xj, uj)
 ð38Þ

Jij(t,xi, ui, xj, uj)=
1

2

∂(qi 8 gi)

∂ui

(t, xi, ui)+
∂(qj 8 gj)

∂uj

(t, xj, uj)

� �
ð39Þ

Given the definitions of equations (38) and (39), the

control obstacle can be given similar to before as

UOij =
[

0\t\t

Jij(t, xi, ui, xj, uj)
�1(Oij�f�̂pij(t, xi, ui, xj, uj)g)

ð40Þ

The methods for performing reciprocal collision avoid-

ance with this new control obstacle formulation (equation

(40)) are identical to those defined in Sections 4.3 and 4.4.

6.1. Higher-level control input

We have presented a method for reciprocal collision avoid-

ance for robots in non-homogeneous systems with general,

non-linear equations of motion. In doing so, we have made

three key assumptions, which are:

(I) The control input remains constant over finite time t;

(II) The robots observe each other’s state and control

input;

(III) The robots have the same type of input, equal in

dimension to the workspace.

Many robots have control inputs which violate some or

all of these assumptions. Let us consider a car-like robot

with control inputs of acceleration at the rear axle and the

steering angle. It is not reasonable to assume that these

remain constant for long periods of time as required by (I).

Of course, it will not remain constant because it changes

every sensing-action cycle, but at least we want the con-

stant assumption to give a reasonable estimate of the future

motion of the other robots. For low-level control inputs that

can change quickly (unlike a goal velocity), it cannot be

assumed that a constant control input gives a reasonable

estimate. It is also unreasonable to assume that these low-

level control inputs can be observed by the other robots,

violating (II). Performing reciprocal collision avoidance

between a car-like robot and a differential-drive robot

would violate (III).

For these reasons, we implement a controller which

abstracts the low-level control inputs to a high-level control

input, such as a target velocity, similar to Van den Berg

et al. (2012), Bareiss and van den Berg (2013), and Ruffli

et al. (2013). Abstracting to a high-level input makes the

assumptions reasonable for most mobile robots. A target

velocity typically remains approximately constant over long

periods of time. A velocity is inherently equal to the dimen-

sion of the workspace. Lastly, it is reasonable to assume the

current velocity of other robots can be observed, and it can

be assumed the target velocity is approximately equal to

the current velocity.

7. Results

We performed both simulations and physical experiments

to verify the performance of the algorithm. In this section,

we present the equations of motion for the robots used in

the simulations and physical experiments as well as the

result from those experiments. Each robot presented uses a

controller to define a target velocity as a higher-level con-

trol input.

7.1. Robot dynamics

7.1.1. Differential-drive robot. We implemented a

differential-drive robot in both simulation and experiments.

We used the kinematic model with a three-dimensional

state consisting of the two-dimensional position and the

orientation (x, y, u). The low-level control inputs are the left

and right wheel velocities (vr, vl). The equations of motion

are given as

_x = (vr + vl) cos (u)=2 ð41Þ

_y = (vr + vl) sin (u)=2 ð42Þ
_u = (vr � vl)=‘ ð43Þ

where ‘ is the distance between the wheels.

The low-level control inputs vr and vl are abstracted to a

high-level input vH through a controller where

vr = vH


 

+ ‘k(\vH � u)=2 ð44Þ
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vl = vH


 

� ‘k(\vH � u)=2 ð45Þ

where :vH is the angle the target velocity makes with the

positive x-axis and k is a controller gain. Substituting the

new high-level control inputs from

‘equations (44) and (45) into equations (41) to (43) gives

_x = vH


 

 cos (u), gt _y = vH



 

 sin (u), gt _u = k(\vH � u)

ð46Þ

7.1.2. Differential-drive with off-axle trailer. We imple-

mented a differential-drive robot pulling a trailer in both

simulation and experiments. The equations of motion were

adapted from Lee et al. (2004) which uses a car with an

off-axle trailer. For the configuration given in Figure 4, the

state is given as (x, y, u0, u1) and the equations of motion

are given as

_x = (vr + vl) cos (u0)=2 + _u0d0 sin (u0) ð47Þ

_y = (vr + vl) sin (u0)=2� _u0d0 cos (u0) ð48Þ

_u0 = (vr � vl)=‘0 ð49Þ

_u1 =
vr + vl

2
sin (u0 � u1)� _u0d0 cos (u0 � u1)

� �
=d1

ð50Þ

where d0, d1, and ‘0 are the parameters shown in Figure 4.

We implemented a controller such that

vr + vl

2
= vH


 

, _u0d0 = k(\vH � u0) ð51Þ

which when substituting equation 51 into equations (47) to

(50) gives

_x = vH


 

 cos (u0)+ k(\vH � u0) sin (u0) ð52Þ

_y = vH


 

 sin (u1)� k(\vH � u0) cos (u0) ð53Þ

_u0 = k(\vH � u0)=d0 ð54Þ

_u1 = ( vH


 

 sin (u0 � u1)� k(\vH � u0) cos (u0 � u1))=d1

ð55Þ

7.1.3. Car-like robot. We implemented a car-like robot in

simulation and physical experiments. We used a four-

dimensional state consisting of the two-dimensional posi-

tion, the orientation, and the speed (x, y, u, v). The low-

level control inputs are the acceleration at the rear axle and

the steering curvature (a, k) where equations of motion are

defined at the midpoint by

_x = v cos (u)� ‘vk sin (u)=2 ð56Þ

_y = v sin (u)+ ‘vk cos (u)=2 ð57Þ
_u = vk ð58Þ

_v = a ð59Þ

where ‘ is the distance between the front and rear wheels.

Deriving the equations of motion in terms of the midpoint

of the robot, rather than at the midpoint along the rear axle

keeps the enclosing disc as small as possible.

We implemented a proportional controller to determine

the low-level control inputs in terms of the target velocity

vH:

a = k0( vH


 

� v), k = k1‘(\v

H � u)=v ð60Þ

where k0 and k1 are proportional controller gains.

Substituting equation 60 into equations (56) to (59) gives

_x = v cos (u)� k1(\v
H � u) sin (u)=2 ð61Þ

_y = v sin (u)+ k1(\v
H � u) cos (u)=2 ð62Þ

_u = k1(\v
H � u) ð63Þ

_v = k0( vH


 

� v) ð64Þ

7.1.4. Hovercraft. We implemented a simulated hovercraft-

style robot with two thrusters as seen in Figure 5. The

hovercraft’s state is given as the two-dimensional position,

the heading, the two-dimensional velocity, and the rate of

change of the heading (x, y, _x, _y, u, _u). Given the forces

x

x

y

θ
(x,y) •

•y

fl

fr

l

θ
•

Fig. 5. The model of the hovercraft-like robot implemented in

simulation. The two thrusters are shown as fr and fl with the

distance between them as ‘. The center position and orientation

are shown.

l0

l1

d1

d0

θ 1

θ0
(x,y)

v l

vr

x

y

Fig. 4. The configuration of a differential-drive robot pulling a

trailer with the origin (x, y) considered to be the point of

connection between the robot and the trailer.
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provided by thrusters (fr, fl), the midpoint equations of

motion are given as

€x = (fr + fl) cos (u)� bt _xð Þ=m ð65Þ

€y = (fr + fl) sin (u)� bt _yð Þ=m ð66Þ
€u = (fr � fl)‘=2� br

_u
� �

=i ð67Þ

where m is the mass of the robot, i is the robot’s rotational

inertia, bt is the translational friction coefficient, and br is

the rotational friction coefficient.

Including a proportional-derivative controller to solve

for control inputs as a function of the target velocity vH

gives

(fr + fl)= k0m( vH


 

� vk k) ð68Þ

(fr � fl)‘=2 = k1i(\vH � u)� k2
_u ð69Þ

where k0 and k1 are controller gains, v= ( _x, _y) is the velo-

city, and :vH is the angle the target velocity makes with

the x-axis. Substituting equations (68) and (69) into equa-

tions (65) to (67) gives

€x = k0( vH


 

� vk k) cos (u)� bt _x=m ð70Þ

€y = k0( vH


 

� vk k) sin (u)� bt _y=m ð71Þ

€u = k1(\v
H � u)� (k2 + br=i) _u ð72Þ

7.2. Simulation setup and implementation details

We performed simulations on a desktop machine running

Windows 7 Professional 64-bit with an Intel i7-2600 CPU

(3.40 GHz) and 8 GB RAM. The simulations were devel-

oped in a Visual Studio C + + environment. The fre-

quency of the sensing-action control sequence was 10 Hz.

The equations of motion were discretized using Runge–

Kutta integration at 0.1 s time-steps.

The relative geometry Oij was approximated using a set

of 16 points uniformly sampled around a circle of the

robots’ combined radii. The control obstacle can then be

approximated by performing the operations in equation

(14) on the generated set of points for each time-step up to

the time horizon t. The convex hull of the control obstacle

was computed using the Boost library (Dawes et al., 2009).

Upon determining the halfplanes, the RVO2-2D library

(Van den Berg et al., 2009) was used to compute the new

control input through a convex optimization method.

The differential-drive robots had bounding circle radii

of 0.3 m. The car-like robots had radii of 0.45 m. The

hovercraft robots had radii of 0.47 m. The differential-drive

robots with trailers had radii of 0.45 m. The desired speed

of the robots during the simulations was 0.3 m/s.

Unless otherwise noted, we used a time horizon of

t = 7 s during simulations. This value was determined

experimentally. We found the selection of the time horizon

to have a significant impact on the performance of our

algorithm. Too short a time horizon can lead to a ‘‘late’’

reaction from the robots. This can lead to situations where

a rather large change in control input is necessary to avoid

collisions. If this large input violates the control input con-

straints on the robot, the collision-avoiding input is not

obtainable and a collision can occur. On the other hand,

selecting t to be too large has a negative effect as well. The

halfplanes from equation (18) become more restrictive as t

increases, possibly leading to no solution for equation (26).

The time horizon is an empirical term that is situation-

dependent, which is a limitation of our algorithm. We note

that for the specific case of single integrator dynamics, Gal

et al. (2009) have performed systematic analysis on the

optimal value of the time horizon.

7.3. Simulation results

We performed a variety of simulations to validate our

approach. One set of simulations consisted of groups of

five robots, where each robot type was simulated separately

as shown in Figure 6. We ran simulations with all the robot

types included. One such simulation included two of each

type, eight in total. A selection of screenshots is shown in

Figure 7. We included a simulation where two groups of

four tried to cross the workspace as shown in Figure 8. We

also performed a simulation where a group of four passive

robots cross the workspace in a vertical line while a group

of four active robots cross in the opposite direction. The

four passive robots do not update their control input based

on the positions of the other robots. Selected screenshots

of this are shown in Figure 9. We performed a simulation

Fig. 6. Simulations where five robots avoid collisions while

crossing the workspace. Top left: differential-drive robots. Top

right: car-like robots. Bottom left: hovercraft-like robots. Bottom

right: differential-drive robots with off-axis trailers.

Bareiss and den Berg

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

21



with 100 robots moving from random starting positions to

random goal positions. This simulation can be seen in the

video found at http://arl.cs.utah.edu/research/grca/.

In physical experiments, it cannot be assumed that the

robots can have perfect state estimation of the other robots.

A series of simulations were performed to demonstrate our

algorithm’s robustness in the presence of noise. A group of

eight differential-drive robots were initialized in a circle

and their goal was to cross to the antipodal position. In

these simulations, we introduced artificial noise by adding

a normal random variable to the position components of xj

in equation (14). Increasing the robot’s radius is a common

practice in reciprocal collision avoidance methods, and

therefore we increased our robots’ radii by 10% (0.03 m).

Using a time horizon of t = 5 s, no collisions were

observed until the standard deviation of the sensed position

was 0.07 m. We repeated the experiments with the radii

increased by 25% (0.075 m) and observed collisions at a

standard deviation of 0.15 m. Similar simulations were run

for the same scenario with two of each robot type (differen-

tial-drive, differential-drive with a trailer, car-like, and

hovercraft). In this case, the algorithm was less robust to

noise with collisions resulting from standard deviations of

0.02 m and 0.04 m for bounding radii increases of 10%

and 25%, respectively. This is likely due to the more con-

strained input space eUij for the more complicated dynamics

as well as our use of very simple controllers for complex

equations of motion. These experiments, as we expected,

suggest that for larger noise values a larger increase in the

bounding circle can be used. However, too large a bound-

ing circle makes for extremely conservative actions which

may be too limiting for a given robot’s control input

constraints.

In order to quantify the speed of our algorithm, we cal-

culated the per-time-step-per-robot average computation

time, that is, the time it takes for one robot to determine its

set of safe changes in velocity with respect to every other

robot in a single sensing-action cycle. As can be seen in

Figure 10, this quantity is linear with respect to the number

of robots, as expected. In simulation, we found that it is

possible for over 100 non-homogeneous, non-linear robots

to perform reciprocal collision avoidance at real-time com-

putational rates for a time horizon of t = 20 s with a simu-

lation frequency of 10 Hz. At higher frequencies, for

example, 20 Hz, the trends in Figure 10 would have a slope

of twice that for 10 Hz, due to the doubled frequency dur-

ing the integration in equation (15). As can be seen, the

computation time also shows a linear trend with the value

Fig. 7. A simulation that contains eight robots: two differential-drive (red discs), two differential-drives with trailers (red and white),

two car-like robots (red rectangles), and two hovercrafts (yellow rectangles). They begin on a circle and cross the circle to finish on

the side opposite their starting positions. Six screen shots from the simulation with the individual robot paths are shown.

Fig. 8. Two groups of four robots crossing the workspace while

avoiding collisions with each other.

Fig. 9. A case where two active car-like robots and two active hovercraft robots cross the workspace from right to left as four passive

differential-drive robots cross from left to right. The paths the robots take are drawn and it can be seen that the car-like and hovercraft

robots make the necessary adjustments to avoid collisions with each other and the differential-drive robots.
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of the time horizon, as twice as large a time horizon results

in twice as complex a control obstacle (at least in the way

we implemented its construction).

7.4. Experiments

The physical experiments were performed using the Robot

Operating System (ROS) software platform. A motion-

capture environment was used to estimate the positions and

orientations of the robots. Similar to the simulations, the

control obstacles were approximated using sets of 16 points

uniformly sampled around the robots’ bounding circles.

While the state estimates of the robots are performed by

the motion capture system, the algorithm is developed as a

decentralized method where on-board state estimation

could be implemented in the future.

For the experiments, we used six iRobot Creates. Three

of the Creates were used as differential-drive robots, two

were used to simulate car-like motion by restricting their

minimum turning radius, and the sixth Create had a custom

trailer mounted to it. The Creates have a radius of 0.335 m.

The trailer axle is located 0.25 m behind the center of the

Create. The robots were driven with a desired speed of

0.2 m/s. Their maximum speed possible is 0.5 m/s. The

experiments were performed with a frequency of 50 Hz

and a time horizon of 3.5 s.

Due to the stochastic nature of the experiments from

modeling and sensor error, the robots’ bounding circle was

increased by 25%. Less accurate models or less accurate

sensors could require a further increase in the radius. At

times the robots can be seen moving back and forth

between each other in a form of ‘‘reciprocal dance’’ due to

sensing noise. This phenomenon has been more thoroughly

studied by Conroy et al. (2014).

During the experiments, we recorded the desired velo-

city before the control obstacles algorithm was performed

as well as the collision-free target velocity resulting from

the control obstacles. To further quantify the experimental

results, we determined the Euclidean norm between the

desired and the calculated target velocities, representing the

change in input from the algorithm. From approximately

5500 data points the mean and standard deviation of the set

were found to be 0.0794 m/s and 0.128 m/s, respectively.

We ran experiments similar to the simulations with the

robots crossing through the center of the workspace and

avoiding collisions as shown in Figure 11. We also

Fig. 10. Timing calculations were made for a number of experiments shown above. The data and the first-order fit are shown. For a

sensing-action cycle frequency of 10 Hz, a single time-step is 0.1 s and our algorithm can produce real-time results for over 100 robots.

Fig. 11. An image taken while performing the physical

experiments of our reciprocal collision avoidance algorithm.

Bareiss and den Berg

 at UNIV OF UTAH SALT LAKE CITY on November 5, 2015ijr.sagepub.comDownloaded from 

23



performed experiments of situations more applicable to

real-world scenarios where the robots were divided into

two groups crossing the workspace. Videos of the experi-

ments and simulations can be found at http://arl.cs.uta-

h.edu/research/grca/.

8. Conclusions

Previously, reciprocal collision avoidance has been applied

to a variety of robotic systems with both linear and special

cases of non-linear equations of motion. In these

approaches, the fact that all the robots were the same type

allowed for a relative state formulation to be used.

However, for non-homogeneous systems, that is, systems

of robots that are different types, this is not possible.

In this paper, we presented a unified method for recipro-

cal collision avoidance of non-homogeneous systems of

robots with non-linear equations of motion. In order to do

so, we presented the control obstacle for homogeneous sys-

tems of robots with linear equations of motion. We then

showed how the control obstacle generalizes previous reci-

procal collision avoidance methods and provided examples

of how previous methods fit into our framework. More spe-

cifically, we showed VO (Fiorini and Shiller, 1998), AVO

(Van den Berg et al., 2012), CCO (Ruffli et al., 2013), and

LQR-obstacles (Bareiss and van den Berg, 2013). Finally,

we extended control obstacles for use with non-linear equa-

tions of motion and/or non-homogeneous systems. In our

simulations and physical experiments, we saw that our algo-

rithm was able to provide smooth, collision-free motion for

all robots in the environment.
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CHAPTER 3

STOCHASTIC AUTOMATIC COLLISION

AVOIDANCE FOR TELE-OPERATED

UNMANNED AERIAL VEHICLES

The work in this chapter addresses Objective 2, Task 1, where a stochastic (feedforward

model-based) automatic collision avoidance algorithm was developed and applied to tele-

operated unmanned aerial vehicles. The theoretical and simulation results were published

in the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) in 2015 and the full

paper is reprinted here with permission. More specifically, the paper develops the method

to avoid collisions in the presence of uncertainty in the robot’s motion model as well as the

sensing of the obstacles’ position. The algorithm is studied in simulation with varying levels

of uncertainty, quantifying the true probability of collisions using this algorithm as well as

comparing the performance of the algorithm to a deterministic system.

D. Bareiss, J. van den Berg, and K. K. Leang. “Stochastic Automatic Collision Avoidance

for Tele-Operated Unmanned Aerial Vehicles,” in IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, Hamburg, Germany, Oct. 2015, pp. 4818-4825.



Stochastic Automatic Collision Avoidance for
Tele-Operated Unmanned Aerial Vehicles

Daman Bareiss Jur van den Berg Kam K. Leang

Abstract—This paper presents a stochastic approach for
automatic collision avoidance for tele-operated unmanned aerial
vehicles (UAVs). Collision detection and mitigation in the
presence of uncertainty is an important problem to address
because on-board sensing and state estimation uncertainties are
inherent in real-world systems. A feedforward-based algorithm
is described that continually extrapolates the future trajectory of
the vehicle given the current operator control input for collision
avoidance. If the predicted probability of a collision is greater
than a user-defined confidence bound, the algorithm overrides
the operator control input with the nearest, safe command
signal to steer the robot away from obstacles, while maintaining
user intent. The algorithm is implemented on a simulated
quadrotor helicopter (quadcopter) with varying amounts of
artificial uncertainty. Simulation results show that for a given
confidence bound, the aerial robot is able to avoid collisions,
even in a situation where the operator is deliberately attempting
to crash the vehicle.

I. INTRODUCTION

The number of civil and commercial applications for
unmanned aerial vehicles (UAVs) has risen tremendously
over the past few decades. The applications include environ-
mental control and monitoring [1], 3D mapping [2], telecom-
munication [3], crop and aquaculture farm monitoring [4],
unexploded ordnance detection [5], traffic monitoring [6],
and media resources [7]. Since many small to medium sized
multi-rotor UAVs have the ability to access hard to reach in-
door and outdoor locations or areas that are unfit for humans,
they can be used for search and rescue, law enforcement,
or first responders to enhance situational awareness [8], [9].
However, one of the most daunting tasks for even a skilled
UAV pilot is collision avoidance, especially in tight and
compact environments such as inside of a partially collapsed
building where usually the only feedback is a live-camera
feed. Thus, automatic collision avoidance technology for tele-
operated UAVs is critical and necessary to allow pilots to
focus on higher-priority tasks such as locating survivors.

In this paper, a feedforward-based collision avoidance
algorithm that considers sensing and estimation uncertainties
while maintaining the user’s intent is presented [see block
diagram in Fig. 1(b)]. Specifically, a collision is avoided
by exploiting the dynamics of the robot and the measured

D. Bareiss and K. K. Leang are with the Design, Automation,
Robotics & Control (DARC) Lab, Department of Mechanical Engineering
at the University of Utah. E-mails: daman.bareiss@utah.edu and
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Fig. 1. Collision avoidance for tele-operated UAVs: (a) concept where UAV
pilot controls the aircraft and provides a user input u. When a collision is
detected, with on-board sensing and state estimation, the algorithm produces
an input ∆u that augments the pilot’s input u to steer the robot away from
the obstacle. (b) Control block diagram and (c) the collision avoidance block
where the pilot’s input u is passed through the dynamics model to obtain
the estimated trajectory p̂ along with uncertainty in the motion model m.
This trajectory is checked for collisions against the obstacles O including
uncertainty w. If a collision is detected, the algorithm calculates a change
in input ∆u to avoid collisions. If the input u+∆u is deemed safe, it is
then passed to the robot.

relative distances between objects in the environment for
automatically determining control inputs to safely steer the
UAV away from obstacles [10]. To enable the use of UAVs in
real-world applications, UAVs will need to be equipped with
on-board sensors to measure and/or estimate the distance to
nearby obstacles and maintain an internal estimate of their
state [11]. However, when on-board sensing technology, such
as light detection and ranging (LIDAR), is used the uncer-
tainty in the sensor’s output can significantly affect the per-
formance of the collision avoidance algorithm. For example,
the popular Hokuyo RG-04LX-UG01 LIDAR range sensor
most commonly used in robotics for obstacle avoidance has
an accuracy up to ±3% of the measurement. Measurement
error combined with uncertainty in state estimation (due to
the fact that a model of the robot’s dynamics are used)
can lead to collisions. Because sensing and state estimation
uncertainties are inherent in real-world applications, it is
necessary to consider these uncertainties when developing
collision avoidance algorithms.

The contribution of this work is a feedforward-based colli-
sion avoidance algorithm that explicitly considers uncertainty
in the location of the obstacles and uncertainty in the robot
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Sept 28 - Oct 2, 2015. Hamburg, Germany

978-1-4799-9994-1/15/$31.00 ©2015 IEEE

26



model [see collision avoidance block in Fig. 1(c)]. In particu-
lar, the proposed method estimates the trajectory of the robot
from the current time into the future for some predetermined
amount of time given the robot’s dynamics and the control
input (from the operator). This trajectory is checked for any
collisions with the obstacles in the environment given the
uncertainty in the estimated trajectory and the uncertainty in
the obstacle location, where an on-board LIDAR sensor could
be used for obstacle detection. If the probability of a collision
is found to be above some confidence bound, the algorithm
determines a new control input that is as close as possible to
the operator’s original input while avoiding collisions through
a convex optimization. The minimal change in the input
allows the method to maintain the user’s intent as much as
possible while avoiding collisions.

The feedforward-based algorithm is implemented on a
simulated quadrotor helicopter in a variety of environments
with different magnitudes of artificial uncertainty added to
the obstacle detection and trajectory estimation. It is demon-
strated in simulation that the algorithm provides collision-free
motion probabilistically given the confidence bound selected.

The remainder of this paper is structured as follows.
Related work and comparisons of the proposed work with
similar techniques are discussed in Sec. II. The problem
is defined in Sec. III, followed by a detailed presentation
of the stochastic collision avoidance algorithm in Sec. IV.
Simulation details, results, and discussion are presented in
Sec. V. Finally, concluding remarks and future work are
presented in Sec. VI.

II. RELATED WORK

Collision avoidance is an important research topic in
robotics, where numerous approaches have been developed
and applied to manufacturing systems [12], medical de-
vices [13], and mobile service robots [14]. Some early
methods include potential fields [15], [16], the dynamic
window approach [17], velocity obstacles [18], and vector
field histograms (VFH) [14].

In general, collision avoidance methods can be classified
into one of two main categories: global and local (reac-
tive methods). First, collisions between a mobile robot and
obstacles can be achieved through a motion planning algo-
rithm [19]–[23] which typically assumes a priori information
about the environment. These methods search the robot’s
possible trajectories for the best trajectory with respect to
some goal, typically choosing a trajectory that minimize
the uncertainty. These methods share the similarity that
they select a trajectory and define the control inputs to
control the robot optimally along the selected trajectory.
Often, global planners are computationally expensive and
information about the environment is required.

A second class of collision avoidance algorithms are local
or reactive methods. These methods do not optimize a trajec-
tory, but rather they find a change in control input that will ap-
proximately avoid collisions given a local knowledge (sensor

information) of the obstacles. In many of the reactive algo-
rithms uncertainty is often handled by improving sensory per-
ception [24], [25] or using relative sensing information and
developing control laws that guarantee separation between
agents (and obstacles) in the presence of uncertainty [26].
Additionally, algorithms also approximate the noise by artifi-
cially increasing the size of the robot empirically based on the
uncertainty [27]. Other techniques deal with state uncertainty
by exploiting dynamic programming [28].

Integrated global and local planners have been explored,
where proposed algorithms use a predicted trajectory to avoid
collisions with the observable, local obstacle [18]. Typically,
these algorithms avoid collisions by computing a given
change in input for a current sensing-action cycle, but limited
work has explicitly considered uncertainty and those that do
typically add a buffer or safety zone around the robot [24]–
[27] . The approach in this paper also exploits both global and
local information, but considers explicitly the uncertainty in
the estimation and measurement process. By using a feedfor-
ward prediction of the flight path and computing the expected
robot position along the trajectory, the proposed method
can perform a less approximate consideration of noise than
increasing the radius of the robot arbitrarily as in reactive
planners, but less exact than a full trajectory optimization
of the global planners. This results in an approximate, but
reliable and robust method that can operate in real-time to
assist UAV pilots with collision avoidance.

III. PROBLEM FORMULATION

A. Notation

In the following, vector sets are denoted using calligraph-
ics, for example A. Vectors are represented by boldface
fonts, such as a; matrices are denoted by upper case italics,
for example A; and scalars are represented by lower-case
italics, such as a. Scalar and matrix multiplications, and
Minkowski sums of sets are defined as aB = {ab | b ∈ B},
AB = {Ab | b ∈ B}, A⊕ B = {a+ b | a ∈ A,b ∈ B}.

A vector a sampled from a multivariate normal distri-
bution with mean µ and variance Σ, where Σ is positive-
semidefinite, is denoted by a ∼ N (µ,Σ).

B. System equations, uncertainty, workspace, and obstacles

Consider a robot with general, nonlinear equations of
motion and a state space of arbitrary dimension m. Let
X ⊂ Rm be the state space of the robot and let U ⊂ Rn be
the control input space of the robot. Let the continuous-time
equations of motion of the robot be defined by the function
f ∈ X × U → Rm,

ẋ(t) = f(x(t),u(t)) +m, m ∼ N (0,M), (1)

where x(t) ∈ X and u(t) ∈ U are the state and control input
at time t, respectively. It is assumed that the motion of the
robot is corrupted by zero-mean Gaussian noise m ∈ Rm

with a given covariance M ∈ Rm×m, where M is positive
semi-definite.

27



For a given input u, the predicted state x̂(t) follows

˙̂x(t) = f(x̂,u, t). (2)

Given an initial state x = x(0), x̂ = x̂(0), and a constant
input u, the state of the robot for t > 0 is defined by

x(t) ∼ N (x̂(t), P (t)), (3)

where x̂(t) = g(x̂,u, t) is the expected state at time t, g ∈
X × U × R → X represents the solution to f in Eq. (1)).
P (t) is the uncertainty of the state, defined as

P (t) = E
[
(x(t)− x̂(t))(x(t)− x̂(t))T

]
. (4)

The uncertainty at time t, Eq. (4), is found by solving the
following differential equation:

Ṗ (t) = A(t)P (t) + P (t)A(t)T +M, (5)

where

A(t) =
∂f

∂x̂
(x̂(t),u(t)). (6)

Let Rd be the workspace in which the robot maneuvers,
where typically d ≤ 3, and let O ⊂ Rd define the subset of
the workspace occupied by obstacles. In order to maintain
compatibility with the implementation of on-board sensing,
those regions of the workspace that are occluded by the
obstacles as seen from the current state of the robot are
also considered obstacles. In other words, the subspace of
the workspace that cannot be seen by the robot is also an
obstacle. The obstacles’ positions can be defined relative
to the robot’s position including uncertainty with known
variance Z ∈ Rd×d

O =
n∪

i=1

Oi ⊕ {w}, w ∼ N (0, Z), (7)

where Oi represents individual objects in the environment
that are considered obstacles and w is drawn from a zero-
mean normal distribution with variance Z. The relative
obstacle paradigm provides the benefit of eliminating the
need for the robot to maintain an estimate of its position
over time.

Let R(x) ⊂ Rd denote the subset of the workspace
occupied by the robot when it is in state x ∈ X . Then, a
colliding state is defined as

R(x(t)) ∩ O ≠ ∅. (8)

C. Problem Definition

The problem is defined as finding a minimal change
∆u ∈ U to the control input u ∈ U given the initial state
x ∈ X of the robot to avoid collisions with obstacles within
a time horizon τ . The probability that the robot will collide
with an obstacle given the variance in the state estimate and
obstacle location must be less than a predetermined value p̄
for all time less than the time horizon τ ∈ R, hence

minimize: ∆uTR∆u (9)
subject to: p (∀t ∈ [0, τ ] :: R(x(t)) ∩ O = ∅ | P (t), Z) ≤ p̄,

where R ∈ Rn×n is a positive-definite weight matrix, P (t)
is the variance in the forward prediction of the state, and Z
is the variance in the obstacle location.

IV. A STOCHASTIC APPROACH TO COLLISION
AVOIDANCE

A. Approach

In the following, a feedforward approach is presented for
collision avoidance [see block diagram in Fig. 1(b)]. First, the
following assumptions are made to simply the nonlinear, non-
convex optimization problem for real-time implementation.

Assumption 1. The robot’s position p ∈ Rd can be derived
from the state through a projection

p(t) = Cx(t), (10)

where C ∈ Rd×m.

Assumption 2. The geometry of the robot R is defined as the
smallest enclosing sphere centered at its reference point such
that the geometry is rotationally invariant. Let R(p) ⊂ Rd

be the spherical subset of the workspace occupied by the
robot at position p.

Assumption 3. The robot’s trajectory can be represented
through a first-order Taylor expansion, i.e.,

p̂(t,∆u) ≈ p̂⋆(t) + J(t)∆u, (11)

where

p̂⋆(t) = Cg(x̂,u, t), J(t) = C
∂g

∂u
(x̂,u, t). (12)

Assumption 4. If the robot is collision-free at time τ with
respect to an appropriately chosen convex subset of the free
workspace, then it is assumed that the robot is also collision-
free for all time t ∈ [0, τ ]. This is reasonable for relatively
short time horizons τ .

Given the robot’s current state x and the current control
input u (from the operator), the estimated positions of the
robot in the future are found by Eq. (11). The variance on
the predicted state was given in Eq. (4).

From Assumption 1, the mapping from the robot’s state to
its position also defines the variance on the robot’s position,
i.e.,

Pc(t) = CP (t)CT . (13)

From Assumption 4, when there is uncertainty in both
the obstacle location and the robot’s estimated trajectory, a
probability for a collision must be considered rather than
a deterministic collision or collision-free state. Thus, given
independent Gaussian distributions representing the uncer-
tainty in the trajectory estimation and the obstacle location,
respectively, the probability for a collision is non-zero if

N (p̂⋆(τ), Pc(τ) + Z) ∩ O ≠ ∅. (14)

The robot is considered to be collision-free (probabilistically)
if for all time t ∈ [0, τ ] the probability for a collision to occur
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Fig. 2. Shown is a scenario where a quadrotor helicopter has uncertainty
in both its trajectory estimation and the obstacle location. The a priori
variance Pc(τ) + Z for a given obstacle normal n is represented as
nT (Pc(τ) + Z)n. The collision point pc is defined as the point along
the trajectory where this transformed variance is some distance from the
obstacle based on the selected confidence bound p̄. The halfspace is defined
such that nT p̂(τ,∆u) > c where c = nTpc.

is less than the confidence bound p̄ given the distributions of
the position estimate and obstacle locations, i.e.,

p((R(p(τ))∩O ̸= ∅) | (N (p̂⋆(τ), Pc(τ) +Z)∩O ̸= ∅))
≤ p̄. (15)

For a trajectory that is determined to be collision free, the
current operator’s input u is deemed safe and does not need
to be changed, hence ∆u = 0. Conversely, if the probability
for a collision is greater than the bound p̄ then the operator’s
input is unsafe and must be corrected in order for the robot
to obtain a collision-free trajectory, hence ∆u ̸= 0.

Let pc be defined as the first point along the trajectory that
has a probability of colliding with an obstacle greater than
the confidence bound, thus

pc = p̂⋆(tc), (16)

where

tc = argmin
t∈[0,τ ]

{

p((R(p(t)) ∩ O ̸= ∅) | (N (p̂⋆(τ), Pc(τ) + Z) ∩ O ̸= ∅))
> p̄}. (17)

The probabilities in Eqs. (15) and (17) can be difficult to
compute exactly. Approximating the solution is desirable to
make the algorithm tractable for real-time implementation.

Given a unit normal vector n of the obstacle O that points
into the free workspace, consider a halfspace with the same
normal n (pointing toward the free space) that provides a
convex approximation of the local free space. The halfspace
is located at the collision point pc, determined by Eq. (17).

Given the local approximation of the free space provided
by the halfplane, the uncertainty can be mapped into the
halfspace by transforming the multivariate distribution into a

one-dimensional (along the normal n) Gaussian distribution
centered at pc,

N (p̂⋆(τ), (Pc(τ) + Z)) ≈ N (p̂⋆(τ),nT (Pc(τ) + Z)n).
(18)

Using this approximate representation of the uncertainty,
the probability of avoiding collision can now be represented
very simply by the number of standard deviations for a
desired confidence bound.

Equation (15), given this approximate representation of the
uncertainty, is now redefined such that the robot is considered
to be collision-free for all time t ∈ [0, τ ] if

∀t ∈ [0, τ ] :: R(p̂⋆(t)) ∩ (O ⊕ {σ̂n}) = ∅, (19)

where σ̂ is the distance calculated from the standard deviation
and selected confidence bound p̄ where

σ̂ = anT
(√

Pc(τ) + Z
)
n, (20)

where a is a scaling factor that corresponds to a Chi-Squared
distribution for the given confidence bound p̄.

Equations (16) and (17) can now be approximated by the
following simplified expression:

pc = p̂⋆

(
argmin
t∈[0,τ ]

{R(p̂⋆(t)) ∩ (O ⊕ {σ̂n}) ̸= ∅}

)
, (21)

where if the system has no uncertainty σ̂ = 0, then Eqs. (19)
and (21) are equivalent to the deterministic solution in [10].

Next, given Eqs. (16) and (19), a linear constraint is
defined on the position p̂(τ,∆u) of the robot at time τ (see
Fig. 2)

nT p̂(τ,∆u) > nTpc. (22)

Substituting Eq. (11) from Assumption 3, the constraint
on the robot’s position in Eq. (22) can be transformed into a
constraint on its change in input ∆u

nTJ(τ)∆u > nT (pc − p̂⋆(τ)). (23)

Equation (9) is approximated using Eq. (23) as

minimize: ∆uTR∆u (24)

subject to: nTJ(τ)∆u > nT (pc − p̂⋆(τ)),

where solving this convex optimization, such as is done by
the RVO library in [29], provides a collision free change in
input ∆u with the control input given to the robot as u+∆u.

B. Handling Convex Edges and Corners Through Iteration

The use of an approximation of a convex region of the local
free space near the robot’s trajectory means that it cannot be
assumed that the newly selected control input u+∆u avoids
collisions with respect to all obstacles for all time t ∈ [0, τ ].
This is, in particular, true near convex edges or corners of
the workspace as shown in Fig. 3. However, the approach
can simply be repeated in an iterative fashion to solve this
problem.
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Fig. 3. The iterative process of the algorithm is shown. A trajectory is
estimated from the original operator’s input such that ∆u = 0 and is shown
as p̂(τ,0). The variance on this estimated position is shown as the gray
ellipsoid located at p̂(τ,0). Considering this uncertainty, a new input is
determined u+∆u1 to avoid the first detected collision. The trajectory for
the new input is predicted and is shown with its variance at p̂(τ,∆u1).
This also results in a collision and the algorithm computes a new change
in input ∆u2. The resulting trajectory p̂(τ,∆u2) is collision free and the
input u+∆u2 is passed to the robot.

Assume the algorithm has computed a change in control
input according to Eq. (9) and that it is the first iteration
of the algorithm. Continuing to iteration i, the control input
u +∆ui is used to extrapolate the trajectory and check for
a potential collision. If a collision is found to occur, a new
linear constraint is defined as

aTi ∆u > bi, (25)

where

aTi = nT
i Ji(τ), (26)

bi = nT
i (pc,i − p̂i(τ)). (27)

The convex optimization problem in Eq. (24) can now be
solved for all iterations i by the following:

minimize: ∆uTR∆u (28)

subject to:
∩i

j=1{aTj ∆u > bj}.

Every ith iteration of the algorithm introduces an addi-
tional constraint to the convex optimization problem. After
at most d iterations, the control input u+∆u, where ∆u is
the change in control input computed in the latest iteration,
is then applied to the robot. The number of iterations, and
therefore, the number of constraints is maximized at d,
where d is the dimension of the workspace. This upper limit
accounts for corners of the free space in d dimensions as
shown in Fig. 3. This iterative approach is performed during
every sensing-action cycle of the robot.

This iterative approach aligns with the LP-type algorithm
in [30]. The LP-algorithm solves low-dimensional convex
optimization problems in O(i) expected time by considering
the constraints in an iterative fashion, where i is the number
of constraints. The dimension of the optimization problem
in this paper equals the dimension n of the control input

∆u, which, typically, is equal to the dimension d of the
workspace. Maximizing the number of iterations to d ensures
the convex optimization problem remains feasible.

V. SIMULATION: RESULTS AND DISCUSSION

The proposed approach is implemented in simulation on
a quadrotor helicopter. Results and discussion are presented
below.

A. Implementation Details

All computations were performed on a desktop computer
with an Intel Core i7-4790K, 8GB RAM, and the 64-bit
Ubuntu 12.04 operating system. The algorithm was imple-
mented within the Robot Operating System (ROS) framework
[31]. The simulations used a control cycle frequency of
50 Hz. The VRep simulator from Coppelia Robotics [32]
was used to simulate the behavior of the quadcopter. The
quadcopter was controlled through the use of the V-Rep
ROS plugin that allows communication between a running
ROS node and the simulator. The V-Rep simulator sends the
position of the robot into ROS while the ROS node sends the
control input to be applied to the robot.

The obstacles in the environment are predefined for each
simulation scene and represented as oriented triangular facets.
These triangles model the true obstacles offset along their
normals by the radius r of the bounding sphere of the robot,
approximating the Minkowski difference of the robot and
the obstacles so the robot can be considered as a point. The
trajectory of the robot is estimated by integrating Eq. (1)
forward in time using a Runge-Kutta integration with 0.01s
time-steps. Each increment of the trajectory is considered a
straight-line segment that is checked for intersection with the
obstacle’s triangular facets. The matrices J(τ) and L(τ) were
approximated through numerical differentiation.

1) Quadcopter Dynamics: The simulations incorporated a
model of a quadrotor helicopter similar to work in [10]. The
model has a 12-dimensional state x = [pT ,vT , rT ,wT ]T ∈
X that consists of position p ∈ R3, velocity v ∈ R3,
orientation r ∈ R3 (rotation about r/∥r∥ by an angle ∥r∥),
and angular velocity w ∈ R3. The 3-dimensional control
input u = [uz, ur, up]

T ∈ U consists of the desired vertical
velocity uz , desired roll ur, and desired pitch up. Typically, a
quadcopter also has input for the yaw, but this is a redundant
degree-of-freedom that is held fixed at zero. The equations
of motion are given as

ṗ = v, (29)

v̇ = −kdragv + exp([r])[0, 0, kp1(uz − vz)]
T , (30)

ṙ = w, (31)

ẇ =

kp2(ur − rx)− kdwx

kp2(up − ry)− kdwy

−kp3wz

 , (32)

where [r] represents the skew-symmetric cross product matrix
of r. The terms kdrag = 0.2, kd = 0.1, kp1 = 1.0, kp2 =
10.0, kp3 = 0.1, and kp4 = 0.05 are coefficients and gains
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whose values were estimated to provide realistic motion. The
robot was simulated with an aggressive flight model that
allows for maximum roll and pitch angles of 0.35 rad (20
degrees).

2) Artificial Uncertainty: Artificial noise was included in
the simulations to represent the uncertainty in the trajectory
estimate and the obstacle locations. For the uncertainty in the
estimated trajectory, as the robot propagates its state forward
in time according to the dynamics, a sample was drawn from
a normal distribution of variance M and added according to
Eq. (1). For the uncertainty in the obstacle location, a random
sample was drawn from a normal distribution of variance
Z at the beginning of each sensing-action cycle. This value
was then added to the relative obstacle location that is newly
provided to the robot every sensing-action cycle.

The value to offset the halfplane based on the confidence
bound σ̂ was calculated by first taking taking the Cholesky
decomposition of the covariance matrix such that Σ =√
Σ
√
Σ

T
. The matrix

√
Σ was then projected onto the normal

and scaled as an
√
ΣnT where a represents the value from

the Chi-Squared distribution for a given confidence bound.
For the experiments discussed in the subsequent section, the
confidence bound was set to be p̄ = 0.5, or in other words
the robot has a probability of not colliding that is at least
95% and, therefore, a = 3.841.

B. Results and Discussion

Experiments were performed to investigate the relationship
between the confidence bound p̄ and the true probability
of avoiding collisions using the algorithm presented in this
paper. These experiments were performed by placing the
quadcopter directly next to a wall and providing the robot
with a constant control input in the direction of the wall, or
in other words opposite the wall’s normal n. This constant
input and initial position constantly provides a potential
collision. For this experiment, the motion covariance and
sensing covariance were defined as

M = diag([202I3, 102I3, 52I3, 2.52I3])10
−4, (33)

Z = 0.22I3, (34)

where diag(. . .) represents a block-diagonal matrix, I3 rep-
resents a 3 × 3 identity matrix. The experiment consisted
of 200, 000 time steps and the number of collisions was
recorded. The true probability of collision for the algorithm
was found to be 0.713% with an accurate estimate of the
covariance. This is significantly less probable to have a
collision than the 5% defined by p̄ due to the conservative
nature of the algorithm.

The covariance values can, in practice, be difficult to
properly estimate, particularly the covariance with respect to
the robot’s model. The sensitivity of the algorithm with re-
spect to erroneous values in covariance estimates was tested.
An experiment was performed where the true uncertainty
applied to the robot model and the obstacle location, M and
Z respectively, are underestimated by the algorithm when

TABLE I
ERROR CALCULATIONS AS FRACTION OF RADIUS

Smaller Covariance Larger Covariance
x y x y

Maximum Deviation 10.33 10.01 10.28 8.231
RMS-Average 4.811 5.317 4.634 4.240

Standard Deviation 4.813 3.602 4.621 2.507

computing a change in input [Eq. (20)] by 25% and 50%. At
a 25% underestimate of the covariance, the true probability
of collision only increased by 24.3% to a value of 0.886%.
For an underestimate of the covariance by 50%, the true
probability of collision increased by 176% to 1.97%. This
shows that the true probability of collision is sensitive to the
errors in covariance estimates, but due to the conservative
nature of the algorithm, it is still robust to errors in the
covariance estimates.

Next, three experiments were performed to evaluate the de-
viation from the nominal (deterministic) path in the stochastic
approach. In these experiments, the robot was controlled with
a constant input in the negative y-direction (see Fig. 4)
for a fixed amount of time. The first experiment ran the
deterministic version of the algorithm. The second and third
experiments ran the stochastic version of the algorithm as
developed in this paper. The second experiment used a
smaller covariance of

M = diag([52I3, 2.52I3, 1.252I3, 0.6252I3])10
−4, (35)

Z = 0.052I3, (36)

while the third experiment used a larger covariance of

M = diag([102I3, 52I3, 2.52I3, 1.252I3])10
−4, (37)

Z = 0.12I3. (38)

The entire trajectories were recorded during the experi-
ments and are shown in Fig. 4. The deviations of trajectories
for both covariance values were calculated and are presented
in Fig. 4. At every time-step, the deviation in the trajectory
was calculated in the x − y plane. The deviation in the
z direction is negligible because the algorithm does not
change the input with respect to the robot’s altitude due
to the obstacles being vertically aligned. In the x and y
directions, the maximum deviation over the entire trajectory
was calculated as well as the RMS-average value and the
standard deviation. The results of those calculations, nor-
malized by the robot’s radius, are given in Table I for both
covariance values. As can be seen, the algorithm can have
large deviations from the deterministic results in the presence
of uncertainty while still avoiding collisions. The maximum
deviations were observed to correlate with the robot taking a
more conservative trajectory around the ends of the obstacles
and the deviation grew over time as the deterministic case
results in a faster completion of this trajectory.

A simulation was performed where the quadcopter was
guided through a window-like opening in a large wall (see
Fig. 5). The goal position of the robot was set directly on
the other side of the window from the quadcopter’s initial
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Fig. 4. An experiment was performed to compare the path of the quadcopter through the environment for deterministic collision avoidance and stochastic
collision avoidance with two sets of variances [Eqs. (35)–(38)]. On the left, the resulting paths are given and a zoomed portion is given for clarity. On the
right, the deviations from the deterministic case are given for the two covariances.

position. The quadcopter strafes along the non-vertical wall
and then passes through the window when it reaches it and is
not avoiding collisions with the wall in front of it. This simu-
lation demonstrates the algorithms capabilities to perform 3-
d collision avoidance with non-vertical obstacles even when
using a simple 1-d approximation of the uncertainty.

Videos of the above experiments along with other scenarios
can be found at the University of Utah DARC Lab webpage1.

VI. CONCLUSIONS AND FUTURE WORK

A feedforward-based collision avoidance algorithm for
tele-operated unmanned aerial vehicles that explicitly con-
siders uncertainty was presented. Specifically, the method
estimates the trajectory of the robot from the current time into
the future for some predetermined amount of time given the
robot’s dynamics and the control input (from the operator).
This trajectory is checked for any collisions with the obsta-
cles in the environment given the uncertainty in the estimated
trajectory and the uncertainty in the obstacle location. Exper-
iments were performed on a simulated quadrotor helicopter
that showed the approach is capable of avoiding collisions
with a probability greater than a selected confidence bound.
The approach provides an input that is as close as possible
to the original operator’s input while avoiding collisions. The
minimal change in user input provides a method to control
the quadcopter that is intuitive and safe, allowing the operator
to focus on other tasks.

The approach was developed for general, nonlinear dy-
namics. Future work includes implementation on different
types of mobile robotic systems and on-line implementation
involving on-board range-finding sensors, such as LIDAR.
Additionally, authors plan to apply the technology to UAVs
for search and rescue, to enhance situational awareness for
first responders, and to enable autonomous environmental
monitoring in urban environments.

1http://www.kam.k.leang.com/academics/robotics/

Fig. 5. A 3-dimensional example is shown where the quadrotor is steered
towards a goal point through a window on a slanted wall. The window has
tight clearance with respect to the robot. The height of the window is only
25% larger than the robot’s diameter, however, the diameter is a conservative
estimate provided by the minimum-radius bounding sphere. The width of
the window is 75% larger than the robot’s diameter.
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CHAPTER 4

ONBOARD MODEL-BASED AUTOMATIC

COLLISION AVOIDANCE: APPLICATION

IN REMOTELY PILOTED UNMANNED

AERIAL VEHICLES

4.1 Introduction

Recent advances in unmanned aerial vehicles (UAVs) include improved flight times [1],

[2], advanced flight control systems [3], and reduced development costs [4], and have led to

a dramatic increase in the number of civil and commercial applications for UAVs. Appli-

cations of UAV technology include mapping and media resources [5], [6], search and rescue

[7], precision farming [8], space exploration [9], traffic management [10], environmental

monitoring [11], [12], telecommunication [13], and even entertainment [14]. In fact, many

small multirotor UAVs (such as quadcopters) have the ability to access indoor locations or

complex urban environments that may be hard to reach or unsafe for humans. These UAVs

are ideally suited for search and rescue, law enforcement, and/or emergency response to

enhance situational awareness [15]–[19].

Despite recent advances in the design and development of UAVs, particularly hover-

capable rotorcraft UAVs, the task of carefully navigating the UAV through a cluttered

environment and avoiding a collision with nearby obstacles and humans remains a chal-

lenge [20], [21]. Thus, one of the most daunting tasks for even a skilled UAV pilot is collision

avoidance, especially when a UAV is deployed to help look for survivors inside of a partially

collapsed building where usually the only feedback information is a live-camera feed. The

need for automatic collision avoidance technology for tele-operated UAVs is critical and

necessary to allow pilots to focus on higher-priority tasks such as locating survivors.

Herein, an on-board model-based automatic collision avoidance algorithm that consid-

ers sensing and estimation uncertainties while maintaining the user’s intent is described,

implemented, and validated on a custom-designed experimental multirotor UAV system.
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Specifically, a collision is avoided by exploiting the dynamics of the robot and the measured

relative distances between objects in the environment for automatically determining control

inputs to safely steer the UAV away from obstacles. This work is based on leveraging the

theoretical developments presented in [22], [23], and it is not only applicable to UAVs, but

the algorithm can be applied to other robotic and autonomous systems (such as self-driving

cars) where collision avoidance is needed.

Figure 4.1 shows the block diagram of the collision avoidance approach along with the

newly proposed on-board sensing scheme. During flight, the UAV with on-board computa-

tion continuously predicts the trajectory of the robot given the pilot’s input. At the same

time, on-board sensing such as laser illuminated detection and ranging (LIDAR) sensors

are used for sensing obstacles along the trajectory of the robot. To allow implementation

on low-cost on-board computation, the LIDAR data are processed using a split-and-merge

segmentation algorithm and an approximate Minkowski difference, and the information is

used to predict a collision. If the predicted trajectory and the sensing information lead to

a possible collision, then the algorithm alters the input to the robot to avoid a collision.

Measurement error combined with uncertainty in state estimation (due to the fact that a

model of the robot’s dynamics is used) is also considered in the algorithm. It is pointed

out that when on-board sensing technology is used, the uncertainty in the sensor’s output

can affect the performance of the collision avoidance algorithm. For example, the popular

Hokuyo RG-04LX-UG01 LIDAR range sensor most commonly used in robotics for obstacle

avoidance has an accuracy up to ±3% of the measurement. Because sensing and state

estimation uncertainties are inherent in real-world applications, it is necessary to consider

these uncertainties in the collision avoidance algorithm.

The main contribution of this work is the real-world implementation and verification

of the proposed local, model-based automatic collision avoidance algorithm for remotely-

piloted UAVs with on-board sensing. Compared to existing local or reactive approaches

such as the potential field technique [24], the dynamic window approach [25], velocity

obstacles [26], and vector field histograms (VFH) [27], the proposed approach is based

upon local sensor information but can exploit global information as well. The approach

also considers the uncertainty in the estimation and measurement process, and applies to

the full (possibly nonlinear) robot dynamics.

The remainder of this chapter is structured as follows. A detailed summary of related

work and the comparison of this work to similar techniques is presented in Sec. 4.2. A

detailed summary of the stochastic collision avoidance algorithm is given in Sec. 4.3, fol-
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Figure 4.1: Collision avoidance for tele-operated UAVs: A UAV pilot controls the aerial
vehicle and provides input u. When a collision is detected with on-board sensing and state
estimation, the algorithm produces an input ∆u that augments the pilot’s input u to steer
the robot away from the obstacle. The control block diagram includes the sensing block
and the collision avoidance block where the pilot’s input u is passed through the dynamics
model to obtain the estimated trajectory p̂ along with uncertainty in the motion model m.
This trajectory is checked for collisions against the obstacles O. If a collision is detected,
the algorithm calculates a change in input ∆u to avoid collisions. If the input u + ∆u is
deemed safe, it is then passed to the robot.

lowed by a description of the custom-designed experimental UAV system with on-board

computation and obstacle detection in Sec. 4.4. The experimental results and discussion

are presented in Sec. 4.5. Finally, concluding remarks and a discussion of future work are

presented in Sec. 4.6, and acknowledgments are found in Sec. 4.7.

4.2 Related Work and State-of-the-Art

Collision avoidance is an important research topic in robotics, where numerous ap-

proaches have been developed and applied to manufacturing systems [28], medical de-

vices [29], and mobile service robots [27]. Some early methods include potential fields [24],

the dynamic window approach [25], velocity obstacles [26], and vector field histograms

(VFH) [27]. In general, collision avoidance methods can be classified into one of two main

categories: global (motion planning methods) and local (reactive methods).

First, collisions between a mobile robot and obstacles can be achieved through a global

motion planning algorithm which typically assumes a priori information about the environ-

ment [30]–[32]. In [33], a path planning approach is used where collisions are avoided during
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the trajectory generation stage. These methods search the robot’s possible trajectories for

the best trajectory with respect to some goal, typically choosing a trajectory that minimize

the uncertainty while reaching some desired goal state (i.e., position). Often, global planners

are computationally expensive and complete information about the environment is required.

Thus, in applications where robots are equipped with cameras for search and rescue in

collapsed buildings or in unstructured environments, global planners may provide limited

performance.

The second class of collision avoidance algorithms are local or reactive methods. These

methods do not optimize a trajectory, but rather they find a change in control input that

will approximately avoid collisions given a local knowledge (sensor information) of the

obstacles and environment. Many of the reactive algorithms use relative sensing information

and develop control laws that guarantee separation between agents (and obstacles) in the

presence of uncertainty [34]. Other techniques deal with state uncertainty by exploiting

dynamic programming [35].

In many implementations of the local algorithms the collision avoidance is approximated

through a first-order model by predicting time to impact between the robot and an obstacle

while only considering some maximum acceleration [36]–[39]. The algorithm in this chapter

performs collision avoidance with an explicit model of the robot’s full, possibly nonlinear

equations of motion, rather than approximating collisions through the relative velocity

formulation.

Integrated global and local planners have been explored, where these algorithms use a

predicted trajectory to avoid collisions with the observable, local obstacle [26]. Typically,

these algorithms avoid collisions by computing a given change in input for a current sensing-

action cycle [34], [40], [41]. The approach in this chapter is intended for use with local sensor

information, but it can also be applied in situations where global knowledge is provided.

The formulation is applicable to the full robot dynamics and the method considers explicitly

the uncertainty in the estimation and measurement process.

In [36], the FastSLAM algorithm [42] is implemented to predict distance to obstacles.

Much research has been focused on using vision to detect and avoid obstacles, especially in

the field of autonomous automobiles [43], [44]. Vision has been applied to obstacle detection

and avoidance in UAVs as well [45]–[48]. Vision has been shown to provide robust obstacle

position estimates, but it can be computationally expensive when compared to the more

traditional approach of using range-based sensors such as described in [49]–[51].
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4.3 Automatic Collision Avoidance Algorithm

This section presents the details and main results of the model-based stochastic auto-

matic collision avoidance algorithm. Additional details of the theoretical framework are

described in [23]. First, the problem is formally defined below in Sec. 4.3.1, followed by

details of the algorithm in Sec. 5.3.3. It is pointed out that the work in [22], [23] assumed

that the UAV was not able to yaw by operator commands. On the other hand, for many

applications, including search-and-rescue, the UAV pilot must be able to provide a yaw

command to the robot to enable the operator to search and survey a given area through video

feedback. Thus, the method proposed herein incorporates yaw for practical application in

UAVs, and Sec. 4.3.2.4 presents the details.

4.3.1 Problem Formulation

4.3.1.1 Notation

Throughout this chapter, vectors are denoted by boldface lower-case letters, for example

a. Vector sets are represented by calligraphics, such as A. Scalar and matrices are denoted

by lowercase italic letters, such as a, and uppercase italic letters, such as A, respectively.

Scalar and matrix multiplications as well as Minkowski sums of sets are defined as follows:

xA = {xa | a ∈ A}, (4.1)

XA = {Xa | a ∈ A}, (4.2)

X ⊕A = {x + a | x ∈ X ,a ∈ A}. (4.3)

A vector a that is sampled from a normal distribution with mean ā and variance Σ,

where Σ is positive-semidefinite, is given by

a ∼ N (ā,Σ). (4.4)

4.3.1.2 Problem Definition

Consider a robot with general, potentially nonlinear equations of motion and a state

space of dimension m. Let the state space of the robot be X ⊂ Rm and let the control

input space be U ⊂ Rn. Let the continuous-time equations of motion of the robot be

defined by the function f ∈ X × U → Rm,

ẋ(t) = f(x(t),u(t)) + m, m ∼ N (0,M), (4.5)

where x(t) ∈ X and u(t) ∈ U are the state and control input at time t, respectively. It is

assumed that the motion of the robot is corrupted by zero-mean Gaussian noise m ∈ Rm

with a given covariance M ∈ Rm×m, where M is positive semidefinite.
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For a given input u, the predicted state x̂(t) follows the relationship

˙̂x(t) = f( ˆx(0),u, t). (4.6)

Given an initial true and predicted state, x = x(0) and x̂ = x̂(0) respectively, and a

constant input u, the state of the robot for t > 0 is defined by

x(t) ∼ N (x̂(t), P (t)), (4.7)

where x̂(t) = g(x̂,u, t) is the expected state at time t, g ∈ X × U × R→ X represents the

solution to Eq. (5.1), and P (t) is the uncertainty of the state, defined as

P (t) = E[(x(t)− x̂(t))(x(t)− x̂(t))T ]. (4.8)

The uncertainty at time t, Eq. (4.8), is found by solving the following differential

equation:

Ṗ (t) = A(t)P (t) + P (t)A(t)T +M, (4.9)

A(t) =
∂f

∂x̂
(x̂(t),u(t)). (4.10)

Let Rd be the workspace in which the robot maneuvers, where typically d ≤ 3, and let

O ⊂ Rd define the subset of the workspace occupied by obstacles. In order to maintain

compatibility with the implementation of on-board sensing, those regions of the workspace

that are occluded by the obstacles as seen from the current state of the robot are also

considered obstacles, meaning the subspace of the workspace that cannot be seen by the

robot is also considered an obstacle. The obstacles’ positions can be defined relative to the

robot’s position, including uncertainty with known variance Z(x) ∈ Rd×d as

O =

n⋃
i=1

Oi ⊕ {w}, w ∼ N (0, Z(x)), (4.11)

where Oi represents individual objects in the environment that are considered obstacles and

w is drawn from a zero-mean normal distribution with variance Z(x). The variance in the

sensing Z(x) is a function of the state x to represent how the uncertainty in some sensors

can change with the distance to obstacles, such as with laser rangefinders the uncertainty

typically decreases as the distance to an object decreases.

Let R(x) ⊂ Rd denote the subset of the workspace occupied by the robot when it is in

state x ∈ X . A colliding state is then defined as

R(x(t)) ∩ O 6= ∅. (4.12)

The problem is now defined as finding a minimal change ∆u ∈ U to the control input

u ∈ U given the initial state x ∈ X of the robot to avoid collisions with obstacles within
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some time horizon τ . The probability that the robot will collide with an obstacle given the

variance in the state estimate and obstacle location must be less than p̄ for all time less

than the time horizon τ ∈ R, therefore

minimize: ∆uTR∆u (4.13)

subject to:

p (∀t ∈ [0, τ ] :: R(x(t)) ∩ O = ∅ | P (t), Z(x)) ≤ p̄,

where R ∈ Rn×n is a positive-definite weight matrix and P (t) is the variance in the forward

prediction of the state.

4.3.2 Technical Approach

In the following, a model-based feedforward approach is presented for collision avoidance

(see block diagram in Fig. 4.1).

4.3.2.1 Assumptions

First, the following assumptions are made to simplify the nonlinear, nonconvex op-

timization problem for real time implementation with potentially limited computational

power:

• The robot’s position p ∈ Rd can be derived from the state through a projection

p(t) = Cx(t), (4.14)

where C ∈ Rd×m.

• The geometry of the robot R is defined as the smallest enclosing sphere centered at

its reference point such that the geometry is rotationally invariant. Let R(p) ⊂ Rd be

the spherical, or ellipsoidal, subset of the workspace occupied by the robot at position

p.

• The robot’s trajectory can be represented through a first-order Taylor expansion, i.e.,

p̂(t,∆u) ≈ p̂?(t) + J(t)∆u, (4.15)

where

p̂?(t) = Cg(x̂,u, t), J(t) = C
∂g

∂u
(x̂,u, t). (4.16)

• If the robot is collision-free at time τ with respect to an appropriately chosen convex

subset of the free workspace, then it is assumed that the robot is also collision-free

for all time t ∈ [0, τ ]. This is reasonable for relatively short time horizons τ .
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4.3.2.2 Algorithmic Solution

Given the robot’s current state x and the current control input u (from the operator),

the estimated positions of the robot in the future are found by Eq. (5.8) (see block diagram

in Fig. 4.1). The variance on the predicted state is given in Eq. (4.8).

From Assumption 4.3.2.1, the mapping from the robot’s state to its position also defines

the variance on the robot’s position, i.e.,

Pc(t) = CP (t)CT . (4.17)

From Assumption 4.3.2.1, when there is uncertainty in both the obstacle location and

the robot’s estimated trajectory, a probability for a collision is to be considered rather

than guaranteed prediction of a collision. Thus, given independent Gaussian distributions

representing the uncertainty in both the trajectory estimation and the obstacle location,

respectively, the probability for a collision is nonzero if

Pcollision = (N (p̂?(τ), Pc(τ) + Z(x)) ∩ O) 6= ∅. (4.18)

The robot is considered to be probabilistically collision-free for all time t ∈ [0, τ ] if the

probability for a collision to occur is less than the confidence bound p̄, given the distributions

of the position estimate and obstacle locations, i.e.,

p((R(p(τ)) ∩ O 6= ∅) | (Pcollision 6= ∅)) ≤ p̄. (4.19)

For a trajectory that is determined to be collision free, the current operator’s input u is

deemed safe and does not need to be changed, hence ∆u = 0. However, if the probability

for a collision is greater than the confidence bound p̄ then the operator’s input is deemed

unsafe and must be corrected in order for the robot to obtain a collision-free trajectory,

resulting in ∆u 6= 0.

Let pc be defined as the first point along the trajectory that has a probability of colliding

with an obstacle greater than the confidence bound, thus

pc = p̂?(tc), (4.20)

where

tc =

argmin
t∈[0,τ ]

{p((R(p(t)) ∩ O 6= ∅) | (Pcollision 6= ∅)) > p̄}. (4.21)

The probabilities in Eqs. (4.19), (4.21) can be difficult to compute exactly. Therefore,

the approximate solution is considered. Given a unit normal vector n of the obstacle O
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that points into the free workspace (see Fig. 4.2), consider a halfspace with the same normal

n (pointing toward the free space) that provides a convex approximation of the local free

space. The halfspace is located at the collision point pc, determined by Eq. (4.21).

Given the local approximation of the free space provided by the halfplane, the uncer-

tainty can be mapped into the halfspace by transforming the multivariate distribution along

the normal n into a one-dimensional Gaussian distribution centered at pc,

Pcollision ≈ N (p̂?(τ),nT (Pc(τ) + Z(x))n). (4.22)

Using this approximate representation of the uncertainty, the probability of avoiding

collision can now be represented very simply by the number of standard deviations for a

desired confidence bound.

Equation (4.19), given this approximate representation of the uncertainty, is now rede-

fined such that the robot is considered to be collision-free for all time t ∈ [0, τ ] if

∀t ∈ [0, τ ] :: R(p̂?(t)) ∩ (O ⊕ {σ̂n}) = ∅, (4.23)

where σ̂ is the offset distance calculated from the standard deviation and selected confidence

bound p̄ where

σ̂ = anT
√
Pc(τ) + Z(x)n, (4.24)

where a is a scaling factor that corresponds to the Chi-Squared distribution for the selected

confidence bound p̄.

Equations (5.9) and (4.21) can now be approximated by the following simplified expres-

sion:

pc = p̂?

(
argmin
t∈[0,τ ]

{R(p̂?(t)) ∩ (O ⊕ {σ̂n}) 6= ∅}

)
, (4.25)

where if the system has no uncertainty σ̂ = 0, then Eqs. (4.23),(4.25) are equivalent to the

deterministic solution in [22].

Next, given Eqs. (4.23), (5.9), a linear constraint is defined on the position p̂(τ,∆u) of

the robot at time τ (see Eq. (4.2))

nT p̂(τ,∆u) > nTpc. (4.26)

Substituting Eq. (5.8) from Assumption 4.3.2.1, the constraint on the robot’s position

in Eq. (5.10) can be transformed into a constraint on its change in input ∆u

nTJ(τ)∆u > nT (pc − p̂?(τ)). (4.27)
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Figure 4.2: Shown is a scenario where a quadcopter UAV has uncertainty in both its
trajectory estimation and the obstacle location. The a priori variance Pc(τ) + Z(x) for a
given obstacle normal n is represented as nT (Pc(τ) + Z(x))n. The collision point pc is
defined as the point along the trajectory where this transformed variance is some distance
from the obstacle based on the selected confidence bound p̄. The halfspace is defined such
that nT p̂(τ,∆u) > c, where c = nTpc.

Equation (5.7) is approximated using Eq. (5.11) as

minimize: ∆uTR∆u (4.28)

subject to: nTJ(τ)∆u > nT (pc − p̂?(τ)),

where solving this convex optimization, such as is done by the RVO library in [52], provides

a collision-free change in input ∆u with the control input given to the robot as u + ∆u.

4.3.2.3 Handling Convex Corners

The use of an approximation of a convex region of the local free space near the robot’s

trajectory means that it cannot be assumed that the newly selected control input u + ∆u

avoids collisions with respect to all obstacles for all time t ∈ [0, τ ]. This is, in particular,

true near convex edges or corners of the workspace, as shown in Fig. 4.3. However, the

approach can simply be repeated in an iterative fashion to solve this problem as described

below.

Assume the algorithm has computed a change in control input according to Eq. (5.7)

and that it is the first iteration of the algorithm. Continuing to iteration i, the control

input u + ∆ui is used to extrapolate the trajectory and check for a potential collision. If a

collision is found to occur, a new linear constraint is defined as
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Figure 4.3: The iterative process of the collision avoidance algorithm: (a) A trajectory,
p̂(τ,0), is estimated from the original operator’s input such that ∆u = 0. The variance on
this estimated position is shown as the gray ellipsoid located at p̂(τ,0). Considering this
uncertainty, a new input, u + ∆u1, is determined to avoid the first detected collision. (b)
The trajectory, p̂(τ,∆u1), for the new input is predicted, also resulting in a collision, and
the algorithm computes a new change in input ∆u2 with respect to halfplane constraints
defined by both p̂(τ,0) and ˆp(τ,∆u1). The resulting trajectory p̂(τ,∆u2) is collision free
and the input u + ∆u2 is passed to the robot (compare block diagram in Fig. 4.1).

aTi ∆u > bi, (4.29)

where

aTi = nTi Ji(τ), (4.30)

bi = nTi (pc,i − p̂i(τ)). (4.31)

The convex optimization problem in Eq. (5.12) can now be solved for all iterations i by

the following:

minimize:∆uTR∆u (4.32)

subject to:
⋂i
j=1{aTj ∆u > bj}.

Thus, every ith iteration of the algorithm introduces an additional constraint to the

convex optimization problem. After at most d iterations, the control input u + ∆u is then

applied to the robot. The number of iterations, and therefore the number of constraints, is

maximized at d, where d is the dimension of the workspace. This upper limit accounts for

corners of the free space in d dimensions as shown in Fig. 4.3. This iterative approach is

performed during every sensing-action cycle of the robot.

This iterative approach aligns with the LP-type algorithm in [53]. The LP-algorithm

solves low-dimensional convex optimization problems in O(i) expected time by considering
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the constraints in an iterative fashion, where i is the number of constraints. The dimension

of the optimization problem in this chapter equals the dimension n of the control input ∆u,

which, typically, is equal to the dimension d of the workspace. Maximizing the number of

iterations to d ensures the convex optimization problem remains feasible.

4.3.2.4 Incorporating Yaw Control

For a hover-capable multirotor UAV, yaw is a redundant degree-of-freedom that can be

held constant. This condition is further emphasized in Sec. 4.4.1.1. However, when the

UAV is equipped with cameras that enable a pilot to survey an area in applications such

as a search and rescue, the pilot must be able to rotate the robot. This is particularly

important if the pilot is flying through a first-person video feed on a forward-facing camera.

The yaw degree-of-freedom is controlled completely by the pilot, meaning the algorithm

does not augment this input. As discussed in Sec. 4.3.2.3, the dimension of the input

adjusted by the algorithm is equal to the dimension of the workspace d to ensure the

convex optimization problem is feasible. However, the yaw rate of the robot can still be

controlled by the user with this algorithm. The algorithm will calculate the feedforward

trajectory estimate assuming a constant yaw-rate (from the user) and will calculate the new

roll, pitch, and thrust at time t = 0 to avoid a collision at time τ . The yaw-rate affects the

algorithm’s change in roll and pitch through the Jacobian in Eq. (4.16).

It is pointed out that the maximum yaw-rate and time horizon must be carefully selected.

If either value is too large the predicted trajectory of the robot can be poorly predicted by

Assumption 4.3.2.1 or can violate Assumption 4.3.2.1, possibly leading to collisions.

4.4 The Experimental UAV System with Onboard
Computation and Sensing

In this section, the custom-designed experimental quadcopter UAV system is described,

along with the onboard obstacle detection hardware and relevant signal processing algo-

rithms.

4.4.1 The Experimental Quadcopter UAV System

The collision avoidance and obstacle detection algorithms are implemented on a custom-

designed physical quadrotor helicopter shown in Fig. 4.4. The UAV has a footprint of

75 cm from rotor-tip to rotor-tip. In Fig. 4.4, the key components are listed, where the

quadcopter uses the Pixhawk commercial autopilot from 3D Robotics for flight control. The

2D spinning LIDAR is the RPLidar 360◦ LIDAR. The LIDAR-Lite laser rangefinder from
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Figure 4.4: The custom-designed experimental quadcopter UAV system with onboard
obstacle detection hardware shown on the left. The Odroid XU4, running the Robot
Operating System (ROS), reads the sensor data and runs the algorithms onboard and
provides commands to the Pixhawk autopilot to control the motion of the UAV. The right
shows the top-down view of the quadcopter and the x/y coordinate frame in which the 2D
spinning LIDAR provides data. The range finders (single-point LIDAR and sonar sensors)
are oriented in the z-direction in and out of the page.

PulsedLight serves as the downward-facing laser rangefinder. In addition, the system has

two upward-facing sonar sensors (Maxbotix XL-EZ4); however, the experiments performed

focus on the results of collision avoidance with respect to walls in the environment using

the 2D LIDAR rather than the floor and ceiling.

The collision avoidance algorithm is running on an onboard single-board computer

(Odroid XU4). The computer is equipped with the Ubuntu 14.04 operating system running

the Robot Operating System (ROS), version Indigo. The Pixhawk and sensors are connected

to the Odroid through a USB interface. The Pixhawk receives the pilot’s desired roll, pitch,

yaw rate, and throttle commands through a standard 2.4 GHz RC transmitter and passes

these values to the Odroid. These inputs are then updated if a collision is predicted and the

new values are passed from the Odroid to the Pixhawk to control the motion of the UAV.

4.4.1.1 Robot Dynamics

The Pixhawk autopilot contains onboard proportional-integral-derivative (PID) con-

trollers to stabilize the attitude of the robot. The Pixhawk also uses a raw throttle

command. This throttle command is calculated by a controller about the vertical velocity.

The closed-loop model is used to calculate the feedforward trajectory estimate provided

an estimate of the current state through an onboard Kalman Filter, implemented on the

Odroid. The model has a 12-dimensional state that consists of position p ∈ R3, velocity
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v ∈ R3, Euler RPY angles r ∈ R3, and angular velocity w ∈ R3:

x = [pT ,vT , rT ,w]T ∈ X . (4.33)

The 4-dimensional control input consists of the desired roll and pitch angles, r?x and r?y

respectively, the vertical velocity v?z , and the yaw-rate w?z :

u = [r?x, r
?
y, v

?
z , w

?
z ]
T ∈ U . (4.34)

The equations of motion are given as

ṗ = v, (4.35)

v̇ = R
[
0, 0, kpv(v?z − vz)

]T − g, (4.36)

ṙ = w, (4.37)

ẇ =

kpx(r?x − rx)− kdxwx
kpy(r?y − ry)− kdywy

kpz(w
?
z − wz)

 , (4.38)

where R is the rotation matrix from the robot frame into the world frame, the terms

kpv, kpx, kdx, kpy, kdy, and kpz are gains whose values were determined through system

identification of the physical system. These model parameters, given in Table 4.1, were

determined experimentally.

4.4.2 Onboard Obstacle Detection

The algorithm, in general, requires a set of three-dimensional planar faces to perform the

collision avoidance. However, to simplify the problem a two-dimensional spinning LIDAR

and one-dimensional laser rangefinders are used to detect obstacles. The LIDAR provides

a set of 2D data points representing the distance to the nearest object in the x/y plane

of the quadcopter body frame (see Fig. 4.4). These obstacles are assumed to be vertical

in the inertial frame such that the 2D data can be used rather than utilizing a 3D point

cloud rangefinder, allowing for fast computation with onboard processing without requiring

more complex implementations such as GPU processing. This assumption is feasible for

situations where the user will not be commanding large vertical velocities at the same time

as large roll or pitch commands, possibly creating a trajectory into an unsensed region of

the workspace.

Table 4.1: Quadcopter Dynamic Parameters

Parameter kpv kpx kdx kpy kdy kpz
Value 10.0 150.0 2.5 150.0 2.5 3.5
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4.4.2.1 LIDAR Segmentation

In order to provide a more efficient obstacle representation to the collision avoidance

algorithm in this chapter, the 2D range data provided by the spinning LIDAR will be

segmented through the clustering and split-and-merge algorithm as discussed in [54]. This

will reduce the number of planar faces that must be checked for a collision against the

predicted trajectory of the robot. The algorithm is presented below in Algorithm 1 and

described next.

The clustering process first takes the list of raw range readings from the sensor and

separates it into clusters. If two points have a difference in range greater than a predefined

magnitude rthresh, then they are considered to be two separate sets of data and the list of

range data is split between the two example points (Fig. 4.5(a)). Next, these subsets from

the clustering process are provided to the split-and-merge algorithm. The split-and-merge

process considers each set of points and creates a line between the first and last points in

a given cluster. The point between the first and last point in the segment, if one exists,

with the maximum distance to the line is selected (Fig. 4.5(b)). If that computed maximum

distance is greater than some threshold dmax, the segment is split into two segments at the

point with the maximal distance to the line between the first and last points (Fig. 4.5(c)).

This process is continued over all subsets until a list of line segments remains where all

the data points are within dmax distance from one of the line segments (Fig. 4.5(d)). The

first and last point in each of the resulting segments are then considered as vertices of the

obstacles for the collision avoidance algorithm.

4.4.2.2 Minkowski Difference Algorithm

The data that have been processed by the LIDAR segmentation, discussed previously,

are used to compute an approximate Minkowski difference which will expand the obstacles

by the robot’s radius. This new volume, after the Minkowski difference, is provided to the

collision avoidance algorithm as the true obstacles to avoid in the environment. A fast

Minkowski solution such as those in [55], [56] can be used if the robot or obstacles are

complicated shapes, however, in this application the robot is bounded by the minimum

volume sphere. Given the simple geometry of the sphere, the Minkowski difference was im-

plemented approximately and directly to avoid the additional computations of, for example,

the reduced convolutions in [56].
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Algorithm 1 Clustering and Split-and-Merge

L ← s0, s1, ..., sN ranges from LIDAR
for all si ∈ L do

if |si − si−1| > rthresh or |si − si+1| > rthresh then
Split L at si

end if
end for
for all Lj ∈ L0,L1, ...,LJ do
L← line between endpoints of Lj
d← max(distance(L, sk ∈ Lj))
if d > dmax then

Split L at argmax(distance(L, sk ∈ Lj))
else

Segment Lj is complete
end if

end for

Figure 4.5: Shown is the graphical representation of the clustering and split-and-merge
algorithm for the LIDAR data. (a) First, the data are clustered based on the difference in
the range data. If two points have a radial distance greater than a threshold |r1−r2| > rthresh
then they are clustered separately, shown as sets of blue and red points for the two clusters.
(b) Shown is the red cluster performing the split-and-merge algorithm. A line is created
between the beginning and end of the cluster and the distance d of the point furthest from
the line is calculated. If that distance is greater than a threshold d > dthresh, the cluster
is split at that point. (c) The results from (b) were split to create two separate clusters of
points. These two new clusters have their furthest point within the threshold d1 < dmax

and d2 < dmax as shown. Therefore, the split-and-merge algorithm is complete for that set
of clusters. (d) Shown is the result of the clustering and split-and-merge algorithm on the
small example data set.
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4.4.2.3 Practical Considerations

The algorithm previously presented is developed to provide collision-free motion, in-

cluding uncertainty in the forward prediction of the trajectory as well as in the obstacles’

sensed positions. In [23], the algorithm was studied for varying amounts of uncertainty

and confidence bounds. Provided the uncertainty covariance matrices, the experimental

application in this chapter could follow that approach directly, but during preliminary

experiments the performance of the algorithm was found to be dominated by other factors

discussed next, and these covariances were not implemented directly.

When the quadcopter is some small distance from the wall and uncertainty causes it

to move closer to the wall than the offset distance value σ̂ in Eq. (4.24), the algorithm

will provide small desired roll and pitch angles. The Pixhawk autopilot was found to be

unable to respond to these small inputs as they are within the signal-to-noise ratio from the

lower-quality sensors’ hardware. This could lead the quadcopter to not physically respond

to the algorithm’s desired output. Secondly, this application on a multirotor vehicle in

constrained indoor environments is also subject to aerodynamic disturbances which can be

large and difficult to model, as shown in current research [57], [58]. These disturbances

will also likely violate the assumptions in [23] that the noise can be modeled as normal

distribution.

The lack of control authority for low-angle desired roll and pitch as well as aerodynamic

disturbances were found to dominate the performance of the algorithm, leading to collisions.

Therefore, through preliminary experiments a constant offset distance value of σ̂ = 1.2 m

was empirically selected. Even in situations with the combined effects of the state estimate

error, lack of control authority, and aerodynamic disturbances, this value of σ̂ was observed

to be able to keep the quadcopter free of collisions.

4.5 Experimental Results and Discussion

The model-based collision avoidance algorithm was implemented on the experimental

quadcopter system to demonstrate the performance of the algorithm. In particular, four

cases were studied. In the first case the pilot commanded the aerial robot to fly straight at

a wall. In the second case, the pilot flew the robot into a corner. In the third case, the pilot

flew the robot through a zone with internal obstacles. Finally, in the fourth experiment the

robot was flown through a hallway with an “S” turn. In each experiment, the data from the

spinning LIDAR were collected as well as the output of the split-and-merge segmentation

and the approximate Minkowski difference. The initial desired trajectory from the pilot’s

input is also recorded along with the final, collision-free trajectory the algorithm calculates.
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In all four cases, the robot executed the algorithm performed as expected, and the measured

responses also agreed with simulations and expected behaviors. The results are described

next.

In the first case, the quadcopter was flown straight at a wall and the results are shown in

Fig. 4.6. The series of images shown in the first two columns in Fig. 4.6 present a sequence of

side- and top-view images extracted from recorded video during the experiment. The results

on the far right-hand column shows the recorded raw LIDAR points, segmented points,

Minkowski points, and the initial and final trajectories of the robot at the corresponding

time steps. The red arrows show the desired trajectory given the user’s input while the

green arrows show the resultant trajectory from the algorithm. Also, it can be seen in the

sensor data in the right column that there are times when the LIDAR returns a maximum

range reading when it should be located on the obstacle. This is from errors in the LIDAR

that can be filtered with post-processing, however, in this chapter these “blips” in the scan

are accounted for in the Minkowski difference and do not need to be filtered from the LIDAR

data initially. As can be seen, initially at t = 2 s the robot is commanded to fly into the wall

on the left, indicated by the red arrow. Since the wall was sufficiently far from the robot,

the algorithm did not alter the pilot’s control input. But as the relative distance between

the wall and robot began to shrink (t = 4, 6, 8 s) and a possible collision was detected by

the onboard LIDAR sensor, the algorithm began to adjust the control input such that it

forced the robot to slow down, and eventually come to a stop in front of the wall in the

limiting case, irrespective of the pilot continuing to command the robot toward the wall.

The motion away from the wall rather than completely stopping is a result of uncertainty

in the motion model causing the robot to pass the safety bound (t = 6, 8 s) of the algorithm

and have to reverse (t = 10s), overshooting the desired position. A more accurate state

estimate through additional sensors would reduce the magnitude of this overshoot. Based

on the results in this first case, the robot can automatically detect an obstacle (such as the

wall) along its trajectory and the algorithm altered the control input to avoid a collision.

In the second case, the quadcopter was flown at a corner and the experimental results

are shown in Fig. 4.7. As shown, the robot was first flown toward a wall on its right and

then it strafed along that wall into the corner (t = 2, 4 s), followed by strafing along the wall

in front of the robot (t = 6, 8, 10 s), as shown in the sequence of images in the first column

in Fig. 4.7. The resulting behavior is collision-free motion with respect to both of the

walls. Again, it can be seen in the physical sensor data in the right-hand column in Fig. 4.7

that there are times when the LIDAR returns a maximum range reading when it should
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Figure 4.6: Case 1: Experimental results where the aerial robot was flown directly at
a wall in front of it. A sequence of time steps is shown along with the data from the
sensors and the resultant desired trajectories. The left column shows the side view where
the quadcopter moves toward the wall and then back away from it. The motion away from
the wall rather than completely stopping is a result of uncertainty in the motion model
causing the robot to pass the safety bound (t = 6, 8s) of the algorithm and have to reverse
(t = 10s), overshooting the desired position. A more accurate state estimate through
additional sensors would reduce the magnitude of this overshoot.
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Figure 4.7: Case 2: Experimental results where the aerial robot was flown into a corner.
The quadcopter is first flown toward the wall on the right, then strafes along it temporarily
(t = 2, 4 s) before moving along the wall in front of it (t = 6, 8, 10 s), resulting in collision-free
motion with respect to both of the walls.
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be located on the obstacle, but these errors are accounted for in the Minkowski difference.

Similar to the results from Case 1, the robot can automatically detect surrounding obstacles

in the x/y plane (such as two walls that form a corner) along its trajectory and modify the

control input to avoid a collision.

In the third case, the robot was tested to determine its ability to handle internal obstacles

(such as office file cabinets). As shown in Fig. 4.8, the quadcopter was flown at a narrow

obstacle that is within the environment rather than only using the exterior walls. The

quadcopter flies toward the cabinet obstacle (t = 0, 1 s) until it then strafes to the right

along the front face of the cabinet (t = 2, 3s). After passing the cabinet, the quadcopter is

able to move toward the wall and come to a stop (t = 4− 9s).

Finally, in the fourth case, both simulations and experiments were performed to study

the performance of the algorithm in a more natural environment, such as flying through

an “S”-shaped basement hallway. Simulation of the hallway scenario was created within a

deterministic simulation environment (V-REP, Coppelia Robotics) to be compared to the

real-world experimental results. The simulation used the robot model presented above in

Sec. 4.4.1.1 and the collision avoidance algorithm presented herein. The simulation and

experimental results are shown in Fig. 4.9(a) and (b), respectively. The results also include

the simulated and measured raw LIDAR points, segmented points, Minkowski points, and

the initial and final trajectories of the robot at the corresponding time steps. As shown

in both the simulation and experimental results, the quadcopter was flown from a straight

hallway toward a wall (t = 0, 2, 4, 6 s), where it strafes to the left (t = 8, 10, 12, 13 s), then

the space opened up into a straight hallway and the robot continued to fly down the straight

hallway (t = 14, 16 s). Both the simulated trajectories and LIDAR scan data showed good

agreement with the measured experimental results shown in Fig. 4.9(b). Thus, the results

Figure 4.8: Case 3: In this experiment, the quadcopter is flown at a narrow obstacle that
is within the environment, rather than only using the horizontal walls. The quadcopter flies
toward the cabinet (t = 0, 1s) until it then strafes to the right along the front face of the
cabinet (t = 2, 3s). After passing the cabinet, the quadcopter is able to move toward the
wall and come to a stop (t = 4− 9s).
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Figure 4.9: Case 4: (a) Simulations and (b) experiments of the robot flying through an
“S”-shaped basement hallway. The quadcopter was flown from a straight hallway toward
a wall (t = 0, 2, 4, 6 s), where it strafes to the left (t = 8, 10, 12, 13 s), then the space
opened up into a straight hallway and the robot continues to fly down the straight hallway
(t = 14, 16 s).
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in this case show that the robot can automatically detect and react to obstacles along its

trajectory, and the results also demonstrate application of the collision avoidance algorithm

in a natural environment.

4.6 Conclusions and Future Work

In this chapter, a feedforward-based automatic collision avoidance algorithm was pre-

sented and implemented on an experimental quadcopter with onboard sensing and com-

putation. From a pilot’s input, the algorithm predicts the trajectory given the current

state that the robot will follow if the input remains constant over some time horizon. If

there is a probability for a collision along the trajectory greater than some predetermined

bound, considering uncertainty in the robot’s motion model and sensing accuracy, then

the algorithm modifies the pilot’s input for a new, collision-free input. A 2D spinning

LIDAR was used to obtain the planar distances to objects in the environment. These range

data were processed using a clustering and split-and-merge algorithm to reduce the number

of planar faces to be considered in the collision avoidance algorithm. An approximate

Minkowski difference of these planar faces was then used to avoid collisions in real time

operation. The implementation was tested in a variety of environments to demonstrate

its performance. The quadcopter was shown to avoid collisions even when the pilot was

intentionally controlling it towards a collision with obstacles in the environment.

In the future, this algorithm could be improved by including an adaptive model for the

feedforward trajectory estimate as well as including additional sensing to provide a more

accurate prediction of collisions. A more accurate collision prediction through improved

models of the aerodynamics as well as more state estimates for the onboard attitude

controllers would allow for the safety buffer to be decreased, which would cause the robot

to fly closer to obstacles and with higher speeds.
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CHAPTER 5

STUDY OF IMPROVED PILOT PERFOR-

MANCE USING AUTOMATIC COLLISION

AVOIDANCE FOR TELE-OPERATED

UNMANNED AERIAL VEHICLES

5.1 Introduction

Unmanned aerial vehicles (UAVs), particularly small, low-cost platforms, have gained

considerable attention for civil and commercial applications ranging from mapping [1] to

precision farming [2], traffic management [3], and environmental monitoring [4]. More

recently, the emergence of small multirotor UAVs (such as quadcopters), which can access

indoor locations and maneuver through environments that are hard to reach or unsafe for

humans, has captured the attention of the public-safety sector and law-enforcement officials

as a viable tool to enhance situational awareness for search and rescue, law enforcement,

and/or emergency response [5]–[7]. However, one of the most daunting tasks for even a

skilled UAV pilot is controlling the aircraft for collision avoidance, especially in tight and

compact environments such as inside of a partially collapsed building where usually the

only feedback information is a live-camera feed through first-person view (FPV) mode (see

Fig. 5.1 illustrating the typical UAV system that is controlled through a remote command

station). Thus, automatic collision avoidance technology for tele-operated UAVs (as well

as mobile ground robots) is critical and necessary to allow pilots to focus on higher-priority

tasks such as locating survivors and acting quickly to help assist survivors or call for

additional support.

To quantitatively investigate the impact of automatic collision avoidance technology on

UAV-pilot performance, the contribution of this paper is a human-subject study that com-

pares the performance between a feedforward-based collision avoidance algorithm [8], [9], a

This material is based upon work supported by the National Science Foundation, Partnership for
Innovation Program, Grant No. 1430328.



62

Figure 5.1: A UAV system for search and rescue and emergency response, where pilots
control the unmanned aerial vehicle (UAV) through (a) a mobile command station or similar
interface following (b) deployment of (c) the UAV with on-board cameras and sensors.
Control signals and data flow between the UAV and command station. Images courtesy of
Mike Richards and Drone America, Inc.

basic risk (potential) field algorithm [10], and full manual control. Specifically, experiments

are described where pilots operate a simulated UAV system running the algorithms through

three maze-like environments. In the experiments, the number of collisions, the path length,

trial time, and average speed are recorded. There are four hypotheses being tested in this

paper. First, it is hypothesized that the algorithm in this paper will result in fewer collisions

than manual control. Second, of the trials that do not collide, it is hypothesized that there

will be higher operating speeds (i.e., shorter completion times) with the algorithm in this

paper over manual control. Third, it is hypothesized that this algorithm will result in fewer

collisions than the potential-field variant, the basic risk field algorithn [10]. Lastly, it is

hypothesized that the algorithm in this paper will provide higher operating speeds than

the basic risk field algorithm. The first, second, and fourth hypotheses are supported by

the experiments, while the third hypothesis is inconclusive, but suggests that there is not a

significant difference in the frequency of collisions between the two algorithms.
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5.2 State-of-the-Art in Collision Avoidance

Early research on motion planning and collision avoidance for mobile robots included

potential-field planners [11] and the vector field histogram (VFH) approach [12]. Improve-

ments were made to the VFH in [13]. Although these algorithms are effective, they do

have some potential limitations for applications such as search and rescue. For instance,

these algorithms have an inherent requirement to keep the robot some minimum distance

away from the obstacles in the environment. The need to maintain a minimum distance

from the walls comes from the fact that the algorithms do not explicitly consider the

dynamics of the robot. However, in a search and rescue scenario the robot may need to be

controlled near walls in constrained environments or in order to more quickly to survey the

environment. Thus, factoring in the robot’s dynamics can improve the performance of the

collision avoidance process.

Collision avoidance methods that do consider the robot’s dynamics typically require a

global knowledge of the environment [14]–[16]. Unfortunately, such information may not be

readily available at the time of search and rescue and is often not practical. Furthermore,

these algorithms are more computationally expensive than the reactive planners such as

potential-fields and VFH.

Herein, a feedforward-based local collision avoidance algorithm is presented that has

similarities to both classes of collision avoidance algorithms [8], [9]. More specifically, the

algorithm considers the robot’s dynamics and extrapolates the robot’s trajectory given an

operator’s input. The resulting trajectory is checked for collisions against the obstacles in

the environment. If a collision is predicted, the user’s input is modified to guide the robot

along a collision-free trajectory. Similar to the reactive planners, such as potential-field,

this algorithm only requires a limited knowledge of the local environment in the immedi-

ate vicinity of the robot. It also has similarities to more complex planners through the

propagation of the trajectory using the robot’s dynamics. However, rather than optimizing

this trajectory explicitly, the algorithm is designed to alter the user’s input directly which

results in collision-free motion while maintaining the user’s intent as closely as possible.

The remainder of this paper is structured as follows. The feedforward-based automatic

collision avoidance algorithm is reviewed in Sec. 5.3. The methodology of the experiments

is presented in Sec. 5.5 and the results are presented and discussed in Sec. 5.6. Finally,

concluding remarks and a discussion of future work are presented in Sec. 5.8.
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5.3 Automatic Collision Avoidance

This section provides a review of the feedforward-based automatic collision avoidance

(ACA) algorithm studied in this paper. The full theoretical details for the deterministic

and stochastic approaches are presented in [8] and [9], respectively.

5.3.1 System Equations and Robot Workspace

Consider a robot with general, nonlinear equations of motion and a state space of

arbitrary dimension m. Let X ⊂ Rm be the state space of the robot and let U ⊂ Rn be

the control input space. The continuous-time equations of motion of the robot are defined

by the function f ∈ X × U → Rm, i.e.,

ẋ(t) = f(x(t),u(t)), (5.1)

where x(t) ∈ X and u(t) ∈ U are the state and control input at time t, respectively.

Given an initial state x = x(0) and a constant control input u up to the time-horizon

τ , the state of the robot for t > 0 is defined by

x(t) = g(x,u, t), (5.2)

where g ∈ X × U × R→ X represents the solution to the differential equation (5.1).

Let Rd be the workspace in which the robot maneuvers, where typically d ≤ 3, and let

O ⊂ Rd define the subset of the workspace occupied by obstacles.

Remark: In order to maintain compatibility with the implementation of on-board sensing,

those regions of the workspace that are occluded by the obstacles as seen from the current

state of the robot are also considered obstacles. In other words, the subspace of the workspace

that cannot be seen by the robot is also an obstacle.

Let R(x) ⊂ Rd denote the subset of the workspace occupied by the robot when it is in

state x ∈ X . Then, a colliding state is defined as R(x(t)) ∩ O 6= ∅.

The model has a 12-dimensional state x = [pT ,vT , r,w]T ∈ X that consists of position

p ∈ R3, velocity v ∈ R3, Euler angles r ∈ R3, and angular velocity w ∈ R3. The 4-

dimensional control input u = [r?x, r
?
y, v

?
z , w

?
z ]
T ∈ U consists of the desired roll and pitch

angles (roll, pitch, and yaw), r?x and r?y, respectively, the desired vertical velocity v?z , and

the desired yaw rate w?z . Assuming a quadcopter UAV system, the equations of motion are

given as
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ṗ = v, (5.3)

v̇ = R
[
0, 0, kpv(v?z − vz)

]T − g − kdragv, (5.4)

ṙ = w, (5.5)

ẇ =

kpx(r?x − rx)− kdxwx
kpy(r?y − ry)− kdywy

kpz(w
?
z − wz)

 (5.6)

where R is the rotation from the quadcopter body frame into the world frame, the terms

kpv, kpx, kdx, kpy, kdy, kpz, and kdrag are gains whose values (given in Table 5.1) are equal

to an analogous physical system. Similar to many physical quadcopters, the simulated

quadcopter has a maximum limit on the roll and pitch angles that is 0.35 rad (approximately

20.0 degrees).

5.3.2 Problem Statement

The collision avoidance problem is defined as finding a minimal change ∆u ∈ U to

the control input u ∈ U given the initial state x ∈ X of the robot to avoid collisions with

obstacles within a time horizon τ , hence

minimize: ∆uTQ∆u (5.7)

subject to: ∀t ∈ [0, τ ] :: R(g(x,u + ∆u, t)) ∩ O = ∅,

where Q ∈ Rn×n is a positive-definite weighting matrix.

5.3.3 Approach

The details of the automatic collision avoidance algorithm are presented below, where

additional details are found in [9].

Given the robot’s current state x and the current control input u (from the operator),

the positions of the robot in the future are found by

p(t,∆u) ≈ p?(t) + J(t)∆u, (5.8)

where p?(t) is the position the robot would obtain if the operator’s input remains constant,

i.e., ∆u = 0, and J(t) is the Jacobian of the position with respect to the input.

For a trajectory that is determined to be collision free (∀t ∈ [0, τ ] :: R(p?(t)) ∩ O = ∅),

the operator’s current input u is deemed safe and does not need to be changed, hence the

change in input is set to zero: ∆u = 0. Conversely, if a collision does occur (∀t ∈ [0, τ ] ::

R(p?(t)) ∩ O 6= ∅) the operator’s input leads to a collision and must be corrected in order

for the robot to obtain a collision-free trajectory, hence the change in input is nonzero:

∆u 6= 0. The process to select a nonzero change in input is discussed next.
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Table 5.1: Quadcopter model parameters

Parameter kpv kpx kdx kpy kdy kpz kdrag
Value 10.0 150.0 2.5 150.0 2.5 3.5 0.25

Let pc be the first point along the trajectory in which the robot collides with an obstacle

(see Fig. 5.2), thus

pc = p?(min{t ∈ [0, τ ] | R(p?(t)) ∩ O = ∅}). (5.9)

Given a unit normal vector n of the obstacle O that points into the free workspace,

consider a halfspace with the same normal n (pointing toward the free space) that provides

a convex approximation of the local free space. The halfspace is located at the collision

point pc, determined by Eq. (5.9).

Given Eq. (5.9), a linear constraint is defined on the position p(τ,∆u) of the robot at

time τ ,

nTp(τ,∆u) > nTpc. (5.10)

The constraint on the robot’s position in Eq. (5.10) can be transformed into a constraint

on its change in input ∆u by substituting in Eq. (5.8), thence

nTJ(τ)∆u > nT (pc − p?(τ)). (5.11)

Equation (5.7) is approximated using Eq. (5.11) as

minimize: ∆uTQ∆u (5.12)

subject to: nTJ(τ)∆u > nT (pc − p?(τ)),

where solving this convex optimization, such as is done by the RVO library in [17], provides

a collision-free change in input ∆u, where finally the total control input provided to the

robot is u + ∆u.

5.3.4 Iteration for Convex Corners and Edges

The use of an approximation of a convex region of the local free space near the robot’s

trajectory means that it cannot be assumed that the newly selected control input u + ∆u

avoids collisions with respect to all obstacles for all time t ∈ [0, τ ]. In particular, this is true

near convex edges or corners of the workspace as shown in Fig. 5.2. However, the approach

can simply be repeated in an iterative fashion to solve this problem, as described in [8].
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Figure 5.2: Robot with its bounding geometry R, where the estimated trajectory for a
user’s input is given with the desired position at the time horizon p(τ, 0) causing a collision
with the obstacle O at pc. The new collision-free input at time τ is solved for; however,
in convex corners this process needs to be iterated to detect possible collisions between the
updated trajectory. Given the first iteration, the new estimated trajectory with the desired
position as p(τ,∆u1) and a new input is chosen if a collision occurs. This is repeated until
the trajectory is collision free, as shown by p(τ,∆u2).

5.3.5 Including Yaw as an Additional Degree-of-Freedom

In [8], [9], yaw motion is treated as a redundant degree of freedom and is held constant.

However, to better enable a pilot to survey an area in a search-and-rescue scenario, holding

the yaw constant limits performance. Yaw motion is especially necessary if the pilot is flying

through a first-person video feed using a forward-facing camera.

To enable the yaw to be controlled by the pilot, the yaw degree of freedom is not affected

by the algorithm. The algorithm determines the feedforward trajectory estimate assuming

the user’s current commanded yaw rate remains constant over the time horizon τ , similar

to the desired roll and pitch angles. Through the Jacobian in Eq. (5.8), the algorithm

can determine new roll and pitch angles and vertical velocity to avoid a collision given a

constant yaw rate.

5.4 Potential-Field for UAV Tele-operation

The potential-field algorithm provides a repulsive force on the robot based on the

distance between the robot and an obstacle detected by a range sensor [11]. The repulsive
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force increases as distance between the robot and the obstacle decreases. However, since

this algorithm produces forces only based on the distance, it can still provide large repulsive

forces even if the robot is moving away from a nearby obstacle, which is not desirable for

tele-operated applications.

In [18], the potential-field algorithm was augmented to include the velocity and ac-

celeration constraints of a robot. However, in this approach the repulsive force is zero

when the robot has no velocity component towards the obstacle. This is undesirable for a

tele-operation application where a user may suddenly provide a control input towards that

obstacle and the robot can collide if a repulsive force cannot counter that input fast enough.

Lam et al. [10] presented the basic risk field (BRF), a potential-field variant, to address

this concern. Their approach provides a small repulsive force for nearby obstacles even

when there is no velocity component of the robot towards that obstacle. Therefore, there is

always a small repulsion force pushing the robot away from obstacles, but the repulsive force

is only a large force when reacting to velocities toward the given obstacle. The potential

function P (d, vi) that defines these repulsive forces given in [10] is

tres(d, vi) =
amaxvi

2damax − v2i
, (5.13)

P (d, vi) =


1, if tres ≤ 0

1, 1
tres(d,vi)

+ 1
d ≥

1
G

G
(

1
tres(d,vi)

+ 1
d

)
, otherwise,

where amax is the maximum deceleration of robot toward an obstacle, vi is the robot’s

velocity component toward the obstacle, d is the distance between the robot and obstacle,

and G is a gain to tune the magnitude of the repulsive gain.

5.5 Experimental Methods

5.5.1 Subjects

Three experiments were performed by 24 subjects (eight per experiment). The subjects

were recruited from the University of Utah student population. The subjects had the

physical ability to use a commercial video game console controller and were at least 18

years of age. The subjects were not compensated for their participation.

The experiment was approved by the University of Utah Institutional Review Board.
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5.5.2 Device

The quadcopter model provided in Sec. 5.3.1 is implemented in simulation on a desktop

computer with an Intel Core i5-3470 3.2 GHz processor, 8GB RAM, and 64-bit Ubuntu

12.04 operating system. The algorithms are implemented using the Robot Operating System

(ROS) [19]. The aircraft is flown in first-person view (FPV) mode, where simulated FPV is

made available to pilots operating the UAV. The simulator includes a 2D LIDAR to detect

the obstacles in the environment in real time during the experiments.

Three environments were created in simulation using the V-REP software package [20] as

shown in Fig. 5.3. The environments each used the same starting position of the quadcopter

but have different finish locations. The corridors of each environment are either 2 m, 1.5 m,

or 1 m wide. The simulated quadcopter has a diameter of 0.564 m.

5.5.3 Design

A full-factorial repeated-measures design is used for the three experiments. There are

two factors being considered in the experiments: the control method (manual, automatic

collision avoidance, or basic risk field) and the environment (mazes shown in Fig. 5.3). A

block design is used in which the three environments are presented to the participant in

eight blocks of three, for 24 total trials. The order of the mazes in each block of three

mazes is a random permutation. Each environment is seen an equal number of times by all

participants.

The experiments compare pairs of control methods. The first and second experiments

compare manual control to the ACA algorithm. These studies test the hypotheses that the

ACA algorithm will result in fewer collisions than manual control, and that when collisions

do not occur, the ACA algorithm will enable higher operating speeds. During a pilot study,

it was observed that many subjects preferred to fly the quadcopter similar to a car, where

they provided a constant forward input and steered the UAV through yaw. However, the

yaw rate input being applied with maximum roll and/or pitch can lead to collisions due to

the assumptions in the ACA algorithm’s development. Thus, the first experiment allowed

the quadcopter to yaw, which led to a relatively high number of collisions. The second

experiment is designed such that the quadcopter cannot yaw. Instead, the camera rotates

and the pilot’s roll and pitch commands are defined in the camera frame and mapped into

the robot frame. The third experiment compares the BRF algorithm to the ACA algorithm.

This experiment tests the hypotheses that the ACA algorithm will result in fewer collisions

than the BRF algorithm, and that the ACA algorithm will enable higher operating speeds

than the BRF algorithm. In [10], the simulated quadcopter was a velocity-controlled robot
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Quadcopter Starting Locations

Finish Locations

Figure 5.3: Three mazes used during the experimental trials. Every maze has the same
starting location with different finish locations as annotated in the image.

with simplified dynamics. The simulations in this paper, however, utilize the full nonlinear

dynamics of the quadcopter with inputs including roll and pitch, i.e., accelerations. There

were unnecessary oscillations observed when using the BRF so a damping term was included

for the roll and pitch inputs.

In each experiment, each participant completed half of their trials (12 trials) using one

of the two control methods and then the second half with the alternate control method.

The experiments alternated the order of the control methods for each successive participant

to attempt to minimize learning effects on the results. For example, the first subject would

be tested first using manual control and second with the ACA algorithm, then the second

subject would first use the ACA algorithm and use manual control second.

5.5.4 Procedure

For each experiment, the subjects completed two sessions with at least 24 hrs between

each session. For each session, the subject sat at a desk and held a wireless game console

controller while directly facing a 24in. desktop computer monitor located approximately

24 in. away from the subject. The subject is instructed that, for each trial, they should

attempt to complete each maze as fast as possible while avoiding collisions. A collision is

indicated by the screen turning red and the current trial stopping automatically.

Before each session, the subject is required to practice with the control method of that

session for three minutes. The quadcopter model is the same during the practice as it is

during the experiments. The environment during the three minutes of practice consists of
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2 m-wide hallways and has a similar appearance to the experiment’s environments.

During the experiment, the subject knows which control method they are using but not

the technical details of the algorithm (or lack thereof). A verbal cue is given to the subject

before each trial begins. A trial ends automatically with a collision or the crossing of the

finish line, after which the process is repeated for all 12 trials of that session. Each session

typically lasts 15–30 min, for each subject, with each subject completing two sessions.

In the first experiment, the subjects are informed that the automatic collision avoidance

algorithm could still have collisions if a full roll or pitch input is applied at the same time as

a yaw input, but no further information about the algorithm is provided. In the second and

third experiments, when the quadcopter cannot yaw, the subjects are not provided with

this additional information about the algorithm.

5.5.5 Measures

To quantify the performance of the subjects operating the simulated quadcopter, their

performance is defined by several metrics: if a collision occurred (yes/no), the time to

complete each trial, the path length traveled, and the average operating speed. The time,

path length, and average operating speed are recorded for the duration of each trial that

ended in either a collision or crossing the finish line.

The collision data can be represented as a binomial distribution and analyzed using the

Friedman test [21]. The maps had a small effect on the results and are distributed equally

in the experiment design, therefore the collisions are only categorized on one level, by which

collision avoidance algorithm (or lack thereof) is being used by the subject. The remaining

measures can be analyzed using a two-way ANOVA [22].

5.6 Experimental Results

The experimental results (the means, standard deviations, and comparison metrics)

are summarized in Table 5.2. Analysis of operating speeds for only the trials that are

completed (i.e., no collisions) is provided in Table 5.3. Table 5.4 shows if each participant’s

individual results supported (3) or contradicted (5) the hypothesis being tested, with

statistical significance at 95% confidence. A “-” represents that no conclusions can be

drawn for or against the hypothesis with statistical significance. Figure 5.4 provides box

plots of the data set for measures in which ANOVA is performed (i.e., all measures except

collisions). For hypothesis two, that the ACA algorithm enables higher operation speeds

than manual control for completed trials, a value of “N/A” means that no manual trials
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Table 5.2: Distribution Statistics for All Subjects and All Trials

(a) Sample Means (µ) and Standard Deviations (s)

Collisions Time Path Len. Avg. Speed
µ s µ s µ s µ s

E1
Man. 0.89 0.32 66 74 32 25 0.64 0.27
ACA 0.53 0.501 74 56 54 25 0.87 0.27

E2
Man. 0.86 0.34 42 38 29 23 0.83 0.35
ACA 0.10 0.31 76 21 71 11 0.97 0.12

E3
BRF 0.073 0.26 112 34 76 17 0.70 0.092
ACA 0.10 0.31 77 17 73 10 0.96 0.12

(b) Comparison Metrics

Collisions Time Path Len. Avg. Speed
Chi-Sq. p F p F p F p

E1 33 1.2e-8 1.5 0.23 43 1.1e-9 55 1.6e-11
E2 103 3.7e-24 68 1.9e-13 351 1.7e-38 15 1.8e-4
E3 0.58 0.44 136 6.7e-22 4.1 0.045 468 1.4e-44

Table 5.3: Distribution Statistics for Completed Trials Only, for All Subjects

(a) Sample Means (µ) and Stan-
dard Deviations (s)

Avg. Speed
µ s

E1
Man. 0.46 0.14
ACA 0.78 0.23

E2
Man. 0.76 0.18
ACA 0.96 0.12

E3
BRF. 0.70 0.09
ACA 0.95 0.11

(b) Comparison Metrics

Avg. Speed
F p

E1 21 2.5e-5
E2 26 1.7e-6
E3 268 5.1e-37

Table 5.4: Hypothesis Results for Individual Subjects

(a) Exp. 1

H1 H2
S1 3 N/A
S2 - -
S3 - N/A
S4 - 3

S5 3 N/A
S6 3 N/A
S7 3 3

S8 - -

(b) Exp. 2

H1 H2
S1 3 3

S2 3 N/A
S3 3 N/A
S4 3 N/A
S5 3 3

S6 3 3

S7 3 3

S8 3 -

(c) Exp. 3

H3 H4
S1 - 3

S2 - 3

S3 - 3

S4 - 3

S5 - 3

S6 - 3

S7 - 3

S8 - 3
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Figure 5.4: Box plots for the experiments comparing automatic collision avoidance (ACA)
algorithm, manual control (Manual), and basic risk field (BRF) algorithm. Results in
(a1)–(a3) show ACA versus manual control of the UAV with yaw. Results in (b1)–(b3)
show ACA versus manual control of the UAV without yaw. Results in (c1)–(c3) show
performance of ACA versus BRF algorithm. Left column shows the trial time [(a1)–(c1)],
middle column shows the path length [(a2)–(c2)], and right column shows the average speed
[(a3)–(c3)].

were completed, or in other words all 12 trials resulted in a collision for that participant

and no statistical testing can be completed regarding the second hypothesis.

5.6.1 Experiment One: Automatic Collision Avoidance (ACA) vs.
Manual Control With Yaw

In regards to Hypothesis 1, the statistical results that include the data from all subjects

and all trials (Table 5.2) indicate that the ACA algorithm results in significantly fewer

collisions than manual control. The mean number of collisions decreased by 40% from
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manual control when using the ACA algorithm. When considering the results for individual

subjects (Table 5.4(a)), four out of the eight subjects showed a significant improvement when

using ACA, and the other four subjects are inconclusive. No subject showed significant

improvement when using manual control.

In regard to Hypothesis 2, the statistical results from all subjects and completed trials

(Table 5.3) indicate that the ACA algorithm enabled pilots to fly the UAV with higher aver-

age operating speeds compared to manual control with a 70% increase in speed. Considering

only the individual results (Table 5.4(a)), two of the eight subjects showed improvement in

their operating speeds with statistical significance. Another two subjects are inconclusive,

with no statistical significance between their speeds. The remaining four subjects did not

complete a single trial with manual control. Although the statistics of their operating speeds

cannot be assessed, the fact that they did not complete a single trial manually demonstrates

the usefulness of the ACA algorithm. No subject showed improvement when using manual

control compared to the ACA algorithm.

5.6.2 Experiment Two: ACA vs. Manual Control Without Yaw

The second experiment addressed Hypotheses 1 and 2 as well, but, unlike the first

experiment, in this experiment the quadcopter cannot yaw. Hypothesis 1 is strongly

supported by the statistical results for all subjects and all trials (Table 5.2). There is an

observed 88% decrease in the number of collisions from manual control when using the ACA

algorithm in this experiment. Looking at the individual subject’s results in Table 5.4(b)

shows that, in fact, every subject had fewer collisions with the ACA algorithm than they

did with manual control with statistical significance.

Considering the statistical results from the completed trials for all subjects (Table 5.3),

Hypothesis 2 is supported as well, where the subjects had a higher mean average operating

speed with statistical significance with a 26% increase in speed. The individual results in

Table 5.4(b) support Hypothesis 2 as well. Four of the eight subjects showed improved

operating speeds with statistical significance. One of the eight subjects is inconclusive and

the remaining three could not be analyzed because they did not complete a single trial using

manual control. None of these subjects showed improvement with significance when using

manual control.

5.6.3 Experment Three: ACA vs. Basic Risk Field (BRF)

This experiment addressed Hypotheses 3 and 4. Regarding Hypothesis 3, there is no

conclusive evidence found from the experiment. There is no significant difference in the
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mean number of collisions between the ACA algorithm and the BRF algorithm. This is the

case for all subjects and all trials (Table 5.2) as well as each individual subject (Table 5.4).

Although Hypothesis 3 is inconclusive, the results of this experiment strongly support

Hypothesis 4. The subjects performed at higher operating speeds with the ACA algorithm

compared to the BRF algorithm as seen by the statistics for all subjects and all trials (Ta-

ble 5.2) and the completed trials only (Table 5.3). When looking at the individual subjects’

results in Table 5.4(c), the hypothesis is supported by all eight subjects independently.

5.7 Discussion

It is observed that there is a large difference in the speed increase between the first and

second experiment, both comparing ACA to manual control. It is hypothesized that this

resulted from the fact that the subjects were informed during the first experiment that a

large yaw input at the same time as roll and pitch could result in collision with the ACA

algorithm and tended to fly differently in both the manual and ACA trials, typically flying

a short distance and stopping and then rotating in place.

The third hypothesis is that there would be fewer collisions using the ACA algorithm

than the BRF algorithm. The results of the third experiment are inconclusive with regard

to this hypothesis. It was expected that the BRF would perform well regarding collisions

due to the potential field’s conservative nature, leading to the slower operation speed, so

these results are not surprising. The ACA algorithm could be made more conservative

to reduce its number of collisions as well. Given the mean number of collisions from the

third experiment, obtaining statistical significance would require a much higher power of

the study through an increased number of subjects. However, the effect size is small (0.12

when considering the BRF as the control group) and a study with higher power is not likely

necessary from a practical standpoint.

The third experiment supported the fourth hypothesis, which is that the ACA algorithm

would perform at higher average operating speeds than the BRF algorithm. An increase

in speed of approximately 37% is observed in the experiment. This improvement in per-

formance is predicted due to the ACA algorithm’s ability to adjust the input based on the

full dynamics and, for example, allowing the robot to strafe along a wall and only alter the

trajectory when a collision is predicted. The BRF is more conservative with a repulsive force

always applied with a magnitude based on velocity and distance to the wall. In the current

implementation, the forces were tuned to be able to travel through the narrow corridors,

which are problematic for potential-field algorithms [23], while still being able to decelerate

the robot to a stop when it approaches a wall at high speed. Although it is predicted that the
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BRF could allow higher operating speeds in less constrained environments, in applications

like search-and-rescue a tightly constrained environment can be expected.

5.8 Conclusions and Future Work

This paper studied UAV-pilot performance with and without the assistance of colli-

sion avoidance algorithms. A comparison was done between a feedforward-based collision

avoidance algorithm, a basic risk field (potential field-based) algorithm, and full manual

control. Human-subject tests were performed where pilots operated a simulated UAV

system running the algorithms through three maze-like environments. In the experiments,

the number of collisions, the path length, trial time, and average operating speed were

recorded. The experimental results showed that the proposed feedforward-based automatic

collision avoidance algorithm is capable of significantly improving a pilot’s performance

compared to manual control and the basic risk field algorithm for the tele-operation of

UAVs.

Further studies would include more extensive comparison of the feedforward-based colli-

sion avoidance algorithm to other local collision avoidance methods and field studies of the

algorithms on various UAV platforms, including fixed-wing configurations.
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CHAPTER 6

DISCUSSION AND FUTURE

CONSIDERATIONS

The desire to incorporate mobile robots into applications that may be dangerous or

undesirable for humans has led to large bodies of research on collision avoidance. Many

approaches have been developed for local obstacle knowledge that react to sensor infor-

mation. Many of the early local collision avoidance methods made assumptions about the

robot being modeled as a kinematic system. This assumption allows for many algorithms

to determine obstacle avoidance maneuvers purely based upon relative distance or relative

velocity between the obstacle and the robot. However, for many robots operating at high

speeds or with large inertial effects, their dynamics should not be ignored. Typically,

algorithms that assume kinematic models compensate for the known error between the

robot’s true model and the kinematic model by making the robot maintain some distance

from the wall to prevent collisions. Some applications, such as operating a robot indoors

with obstacles constantly in close proximity, could perform better if the robot was allowed

to get as close as possible to the obstacles without colliding. These robots can maintain

smaller distances to obstacles if their dynamics are known and explicitly considered.

In Chapter 2, the Control Obstacle was developed and shown for reciprocal collision

avoidance within systems of robots where the robots could have different, nonlinear equa-

tions of motion. In this work, the Control Obstacle was shown to be a generalized repre-

sentation of previous reciprocal collision avoidance methods. An extension to the nonlinear

systems was shown and tested in both simulations and experiments. However, the algorithm

required careful selection of the time horizon over which trajectories were predicted for the

nonlinear systems, such as car-like robots or hovercrafts. If the time horizon was selected

to be too small, the robots could create a dead-lock situation where they got too close to

each other before attempting to perform evasive actions. Due to their limited control input

space, a collision-free input was not always feasible. A time horizon that is too long can

also cause the collision-free control input space of the robots to be an empty set. While this
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result may not be intuitive at first, consider that the algorithm creates the convex hull of

the Control Obstacle with respect to every other robot in the environment. A longer time

horizon creates a longer, possibly highly curved, Control Obstacle that sweeps out a larger

area as the time horizon increases. Essentially, the algorithm can be overly conservative

for a longer time horizon and still lead to a collision by failing to find a feasible change in

control input that is collision free. Currently, simple proportional controllers on heading

and speed, for example, are implemented to initially test the algorithm. By considering

a more complex control system for nonlinear systems that could include sets or sequences

of inputs, using Lie algebra for example [1], could allow for more complex trajectories to

be considered in the model. An alternative could be to perform reinforcement learning on

the system to determine optimal time horizons for varying configurations of robots. Also,

given a set of robots and their dynamics, an offline learning algorithm could potentially be

implemented to determine the estimated best time horizon for the provided set of robots

to avoid collisions [2]–[4].

Chapters 3 and 4 provided an algorithm designed for a single tele-operated robot to avoid

collisions. This algorithm incorporates linear halfspace constraints to find a change in input

similar to the algorithms in Chapter 2. The algorithm is developed for a stochastic motion

and sensing model. However, in practice it can be very difficult to estimate the uncertainty

in a motion model that can capture unmodeled dynamics and external disturbances prop-

erly. Particularly, with a small unmanned aerial vehicle (UAV) such as a quadcopter, the

aerodynamic effects near obstacles can create very large disturbances which are complicated

to model [5], [6]. The inclusion of an adaptive model, such as model predictive control [7],

[8], could help to update the uncertainty in real time.

In Chapter 4, the sensing uncertainty was developed as a function of the relative distance

between an obstacle and the robot. This conveys the fact that many range sensors are more

accurate at shorter distances. However, a more generalized approach could be implemented.

Through sensing and segmentation of the obstacle into planar faces, each vertex could be

assigned a unique covariance value. Through considering the covariance of each vertex, the

algorithm could potentially avoid obstacles and respond differently based on the uncertainty

of each particular object in the environment. For example, if a set of vertices representing

a wall were determined by several sensors’ fused data, those vertices would have a lower

uncertainty than another wall that was only seen by one obstacle, allowing the robot to

maneuver closer to the wall with less uncertainty in its relative position. By computing each

vertex’s uncertainty with respect to the sensor(s) used to detect it, a generalized sensing
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approach could be proposed.

The feedforward model-based collision avoidance made several simplifying assumptions

during its derivation. One such assumption was that if the position of the robot at the end

of the predicted desired trajectory was collision free, then the robot was collision free along

the entire trajectory. This assumption allowed for linear halfspace constraints to define a

collision, and a change in input could be calculated through linear programming method.

However, there are limitations in the algorithm due to this assumption. Similar to reciprocal

collision avoidance methods, the feedforward algorithm in Chapters 3 and 4 requires the

selection of a time horizon to look ahead for a collision. This value, if too small, can lead to

the robot overshooting its desired position and still potentially leading to a collision (a larger

safety buffer through the stochastic algorithm can help alleviate this). However, making

the time horizon too long makes the system respond more like an overdamped system and

can potentially violate other assumptions in the algorithm’s development. Incorporating

the velocity into the halfspace constraint through some kind of function, similar to an LQR

cost matrix, for example, could provide for a desired position at the time horizon with no

velocity component into the obstacle simultaneously.

A second limitation stemming from the position assumption is that nonholonomic robots

may not inherently work in this algorithm. For example, imagine a car-like robot driving

at an obstacle some extended distance away (see Fig. 6.1(a)). If that obstacle is within a

certain distance where the robot has a limited turning radius and is traveling at a high speed,

the resultant trajectory from the algorithm will be similar to the previously mentioned case

when a controller overshoots its desired position and the endpoint of the position is outside

the obstacle. This assumption can also fail to avoid collisions when a quadcopter is provided

a yaw input at the same time as a large roll and/or pitch command (see Fig. 6.1(b)). This

effect was observed in the first study in Chapter 5. A naive approach to solve this could be

to use the maximum penetrating point on the trajectory to define the halfspace constraint,

but this could create more halfspace constraints than there are dimensions of the workspace,

possibly leading to an infeasible linear programming problem where no collision-free input

can be found due to an overconstrained optimization problem.

In Chapter 5, studies were performed to quantify the human operator performance

using the automatic collision avoidance (ACA) algorithm in Chapters 3 and 4, manual

control, and the basic risk field (BRF) [9]. The ACA algorithm was found to perform

better than both manual control and the BRF. In [9], however, the BRF was developed

for a velocity-controlled robot with a simplified model. In this dissertation, the studies
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(a)

(b)

Figure 6.1: Two scenarios in which the algorithm can fail to avoid collisions provided
non-holonomic constraints on a (a) car-like robot or a (b) quadcopter that can yaw.

were performed provided acceleration inputs on the simulated quadcopter. Further studies

could be beneficial to compare the two algorithms in more depth. First, a study could

be performed to determine what gains provide optimal performance for the BRF with

acceleration-controlled robots. The ACA algorithm in this dissertation could also have

studies performed to determine users’ preferred time-horizon for the feedforward prediction.

These two user-selected values, the BRF gains and ACA time-horizon, could then be

compared again to further verify the results of the studies presented in this dissertation. A

set of studies could also be performed using the velocity-controlled robots which the BRF

was originally designed for in order to provide a variety of robots for the configuration.
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CHAPTER 7

CONCLUSIONS

This dissertation focused on advancing the state-of-the-art of local collision avoidance

methods by explicitly considering robots’ dynamics, for single- and multi-robot systems.

For the growing number of applications for mobile robots, such as unmanned aerial vehicles

(UAVs), the robots’ usefulness will increase dramatically if they are able to autonomously

avoid each other and obstacles even under human supervision. Thus, automatic collision

avoidance technology can improve safety as well as broaden applications of many robotic

systems.

First, Objective 1 of this dissertation developed a method of reciprocal collision avoid-

ance for robots with dynamics. Previous methods assumed the robots were all the same

type with linear equations of motions. This work, presented in Chapter 2, demonstrated

the following:

• a unification of all previous reciprocal collision avoidance approaches under a gener-

alized representation using control obstacles

• real time computation rates for over 100 robots

• collision avoidance for nonhomogeneous systems of robots with nonlinear dynamics in

both simulation and real-world experiments

Next, Objective 2 of this dissertation included three tasks. The first was the theoretical

development of a stochastic algorithm for collision avoidance of a tele-operated unmanned

aerial vehicle (UAV). This task demonstrated the following:

• implementation on a simulated quadcopter in two- and three-dimensional environ-

ments

• the approach is capable of avoiding collisions provided uncertainty in the motion model

and sensing of obstacles
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• the approach performed with a lower true probability for collision than the estimated

probability for collision

For the second task of Objective 2, the feedforward approach for automatic collision

avoidance was implemented on a custom-designed quadcopter UAV. The following was

demonstrated during this task:

• the stochastic approach of the previous task is applicable to real-world environments

with completely on-board sensing and computation

• the quadcopter could maneuver in real-world environments without collisions even as

the operator was attempting to cause collisions

For the final task in Objective 2, human-subject studies were performed to quantitatively

compare pilots’ performance using the feedforward approach as well as the basic risk field

(a potential field variant) and full manual control. The algorithm in this dissertation was

found to perform better, particularly in terms of average robot speed, which is an extremely

vital aspect of an application, such as search and rescue, where time is critical. Specifically,

the following was found:

• the approach in this dissertation showed an improvement over manual control with a

88% decrease in collisions and a 25% increase in average robot speed

• the approach in this dissertation showed an improvement over the basic risk field with

a 36.7% in average robot speed

The results of this dissertation advanced the state-of-the-art of local collision avoidance

methods by developing algorithms for both multi- and single-robot systems that can avoid

collisions with other robots and obstacles in the workspace while explicitly considering the

robots’ potentially nonlinear dynamics through a feedforward trajectory estimate. The

results contribute to the field of research that is continuing to make mobile robots more

useful in beneficial applications such as search and rescue.


