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A novel smart-sensor payload for uncrewed autonomous systems and emergency respond-
ers that automatically detects, estimates, and locates chemical sources is presented. The
smart-sensing device fuses Bayesian inference machine learning with information-theoretic
motion planning for fast source estimation and localization. More specifically, chemical
concentration is measured by a newly developed microelectromechanical-system
(MEMS)-based sensor, the location and size of a chemical leak are estimated by a Bayesian
inference machine learning process, and information-theoretic motion planning is used to
optimally guide the user or an autonomous mobile robot during the search process to
improve the speed and accuracy of localizing and quantifying a leaking gas source. Exper-
iments are performed that compare the device’s performance under two different motion
planning methods: (1) moving the device as instructed by the information-based, guided
motion planner and (2) randomly moving the device for search (baseline approach). By fol-
lowing the device’s visual cues on where to take measurements (guided motion method), on
average, the smart chemical sensor locates a source over 170% faster than moving the
sensor randomly (baseline unguided motion method). Additionally, the leak localization
error is less than 6.4% (0.325 m). Finally, live methane gas release experiments are per-
formed to further demonstrate the real-world application of the smart handheld chemical
sensing device. [DOI: 10.1115/1.4069984]
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1 Introduction

Smart and autonomous environmental monitoring systems that
leverage advances in sensors and algorithms (machine learning
and artificial intelligence methods) can be deployed to collect and
analyze environmental data in real-time to support decision-making
and mitigate impact when accidents occur [1,2]. Currently, many
deployed portable chemical leak detection devices are limited to
measuring chemical concentration [3] and do not provide the user
any information on source-term estimates and/or the leak location.
Instead, the user manually processes the concentration mea-
surements offline to find a leak, which is a slow, inefficient, and
imprecise process.

This article describes the development and validation of a
new smart, portable, and low-cost chemical gas leak detection
device that can be used by an emergency responder or easily inte-
grated with an uncrewed autonomous system (ground or air) to
automatically detect, estimate, and locate the source of dangerous
chemical leaks (see Fig. 1). The device uses the advanced
microelectromechanical-system (MEMS)-based Molecular Prop-
erty Spectrometer ™ (MPS™) sensor to measure local chemical
concentration. The measured chemical concentration value, along
with the state (i.e., location) of the device, is processed by a
machine learning Bayesian inference algorithm to estimate the
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source terms and locate the leak. The Bayesian estimator is non-
parametric, handles measurement uncertainty, and can be readily
adapted to allow for the identification of multiple leak sources
within a single search space. The estimation process then outputs
posterior information that an information-theoretic motion planner
uses to create cues to guide the search by a user or a robot. This
process improves both the measurement quality and the speed
and accuracy of the estimation process. Specifically, the device
instructs the user to move toward a region with the highest informa-
tion gain to minimize measurement uncertainty. No handheld por-
table gas detection system with similar capabilities has been
developed or reported, to the best of the knowledge of the
authors. Therefore, the main contribution of this work is the devel-
opment of such a portable device that fuses machine learning with
information-theoretic motion planning for fast source-term estima-
tion and localization. Furthermore, a prototype device is created,
and extensive hardware-in-the-loop (HIL) experiments and live
gas release demonstrations are performed to test the hypothesis
that, by using the new smart chemical gas finder and following its
suggestion on how to move, on average: (a) the source localization
time is faster and (b) the source localization error is lower than ran-
domly moving the device during search.

On average, a major gas leak event occurs every 40h in the
United States [4]. Unfortunately, the rate of major incidents has
not reduced significantly between 2010 and 2021 despite efforts
to do so [4]. Chemical leaks and spills incur financial costs
through loss of resources and the need for repairs, endanger the
environment, and cause potential injury or loss of life within
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Fig. 1 The smart handheld chemical gas source finding device
used to assist in the estimation and localization of chemical gas
leaks in (a) disaster response, (b) air quality monitoring in urban
and suburban environments, (c) indoor chemical monitoring,
and (d) industrial facility monitoring. The device can be inte-
grated with uncrewed aerial and/or ground vehicles or handheld
by emergency responders to optimally guide them to find leaks.
A network of such devices can be used to create a static or
mobile sensor network to expand coverage and enhance
performance.

affected communities. To mitigate the effects of chemical leaks, it is
important to locate the leak source as quickly and accurately as pos-
sible. However, the estimation and localization process is challeng-
ing due to chemical plume complexity, measurement uncertainty,
health and safety concerns, and environmental conditions [5].

One method to detect and locate the source of a leak is to use a
large fixed array of sensors [6,7]. Sensor arrays can effectively
localize a source, but they are costly and more practical if the
leak source is constrained within a known area, such as a chemical
production facility. In the case of natural disasters that occur
without warning, fixed sensor arrays are not practical and cannot
be readily deployed. On the other hand, mobile robotic systems
such as ground and aerial vehicles equipped with sensors and algo-
rithms for source-term estimation and localization are more practi-
cal for rapid response in these types of situations [8—12]. Such
systems have been developed for radiation detection [13] and
search and rescue [14], such as avalanche victim localization
[15]. While unmanned autonomous systems (UAS) equipped with
sensors can more easily traverse complex terrain and avoid the
need to expose human responders to hazards [16], these specialized
UAS systems are costly and cannot be used as a handheld unit by
emergency responders or easily adapted to other UAS platforms,
thus limiting broad application and use.

A low-cost and portable standalone unit with the features of the
proposed device has not been described in the literature. Instead,
state-of-the-art commercial off-the-shelf portable gas detection
devices used by emergency responders only measure and quantita-
tively report chemical concentration. These devices utilize, for
example, electrochemical sensors, flame ionization detectors,
metal oxide (MOX) sensors, photo-ionization detectors, gas
chromatography-mass spectrometry, etc. [3,17]. Although concen-
tration measurements help identify the presence of a chemical, the
task of locating the source requires a large amount of manual
effort and time from emergency responders to interpret the informa-
tion and move the detector to focus on the location of the source.
Such a process is seldom automated, and the performance
depends on who and how it is used. The proposed device automat-
ically estimates and localizes the source, and the performance can
be enhanced through motion planning. By instructing the user on
where to move to for measurement, the motion planning algorithm
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ensures optimal search. Thus, the accuracy of the device is decou-
pled from the user’s experience giving it the advantage that a
novice user with minimal training can still operate it effectively.

The remainder of this article is organized as follows. Section 2
describes the features of the device and how it can be used.
Section 3 describes the source-term estimation, localization, and
motion planning algorithms. Section 4 describes the prototype
device. Experiments are described in Sec. 5. Finally, a discussion
of results and the conclusions is presented in Sec. 6 and 7,
respectively.

2 System Overview

The system architecture is shown in Fig. 2, where the device
interacts with a human user (in handheld mode) or can be carried
by a mobile robotic system (in smart-sensor payload mode) such
as a ground or aerial vehicle, for autonomous chemical source local-
ization. The device consists of a chemical concentration sensor with
output measurement z(f). An inverse feedforward compensator,
with output z;(7), accounts for sensor dynamics to improve response
time. Next, a Bayesian estimator takes sensor measurement zs(%),
the device’s state x() (i.e., position), and a prior [ay, wo] to generate
the posterior distribution [a(z), w(z)], where a is the set that contains
predictions of the leak source terms (target estimates) and w is the
set of associated importance weights for the estimate set . The
posterior distribution is used for motion planning by an
information-theoretic algorithm that maximizes information gain
for efficient target source-term estimation and localization. The
motion planner continuously outputs a desired heading 6, for
the user or the robot to follow and/or process, as needed. The
heading points in the direction of the highest information gain
between the concentration measurement and source-term estimates.
For example, as shown in Fig. 2, the user or the robot can either
track the desired heading 6; (switch Sjg closed) or choose to
ignore the suggestion from the device and move in an unguided
manner (switch Sy closed). It will be shown that following the
device’s suggested heading ensures that the source-term estimation
and localization processes are most efficient.

In addition to outputting the desired heading for the user and/or
the robot to follow, the device reports the current predicted
source terms & of the leak, the current concentration reading z; in
parts per million (ppm), as well as environmental parameters such
as temperature, humidity, and air pressure.

When the environment contains hazardous materials or the
terrain is difficult for an emergency responder to traverse, the
device can be carried by a mobile robot, such as a ground or
aerial vehicle, to find leaks without putting a human in harm’s
way. In this mode, the desired heading 0, is communicated to the
UAS as a reference signal for motion planning and control.

3 Chemical Leak Localization and Estimation

3.1 Measuring Chemical Concentration. The chemical con-
centration is measured by the MPS™ gas sensor developed by
NevadaNano. The MPS™ is a novel MEMS gas sensor that mea-
sures the thermodynamic and electrostatic molecular properties of
the ambient air/gas mixture that it is exposed to through the use
of microhotplates, each coated with semi-selective polymers. The
microplates are heated and their thermal properties are used to deter-
mine the concentration and identity of the analyte. The sensor is
capable of detecting a wide variety of flammable gases, including
methane, propane, butane, ethane, ethylene, hexane, hydrogen, iso-
propanol, pentane, propylene, toluene, and xylene at concentrations
from 1% to 100% lower explosive limit (LEL). The sensor boasts
good selectivity and maintains concentration measurement accu-
racy similar to measuring single gases when a mixture of gases is
present. Additionally, the sensor enables the determination of the
gases present within the environment within six different classes.
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Fig.2 The basic architecture of the smart chemical gas finding device, consisting of a gas sensor with output z(t) and a leak
source-term estimator that generates a posterior [a(t), w(t)], which is fed into an information-based motion planner to calculate
a desired heading 64(t). Information from the device is wirelessly transmitted to the interface with cloud computing, human
users, robotic platforms, transportation vehicles, etc. The user or the robot can either track the desired heading 64(t)
(switch Sy, closed) or choose to ignore the suggestion from the device and move in an unguided manner (switch S¢ closed).

The MPS™ sensor is also poison-immune, unaffected by sensor
drift, lightweight (<4 g), has low operating power consumption
(29mW), and a small form factor (22.9 mm X 26 mm X 5.9 mm).
Through collaboration with NevadaNano, the sensor was modified
by removing filtering layers to achieve a fast time constant (<1 s)
compared to other devices in its class. For example, MOX gas
sensors [18,19] and nondispersive infrared gas sensors [20] have
response times on the order of 5-8 and 15-30s, respectively [8].
The MPS™ sensor also offers 1 ppm detection resolution and
reports environmental conditions such as temperature, humidity,
and pressure.

The specified sensor characteristics, in particular the fast
response time, along with a relatively low unit cost (<$100 USD),
make the MPS™ sensor excel within mobile sensing applications.
This is especially true for applications in handheld systems or as a
payload on a robotic platform where the weight and size must be
greatly constrained. The MPS™ sensor was chosen for use
because other state-of-the-art gas sensors were limited by their
slower response times, higher cost, size, or weight.

Methane gas is used throughout the experiments because it is safe
to use within the available indoor testing environment at levels well
below the LEL, and the MPS™ sensor is capable of measuring and
identifying it. The MPS™ was exposed to a methane source, see

4000
3500 |
3000
2500 |
2000
1500
1000
500 |

Steady state: 3750 ppm ! 1

63.2% of

I
I
l
steady state :

36.8% of

Gas ' | steady state

removed

Methane gas conc. (ppm)

Time (seconds)
Fig. 3 Response of the MPS™ gas sensor, developed by Neva-

daNano, during a methane exposure. The measured response
shows the rise and recovery time constants.
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Fig. 3, and the rise and recover dynamics of the sensor are
modeled by a first-order transfer function [8]:

Z(s)_ b
Z(s) ts+1

Trise if 2(1) >0 M
{ Tree 1f 2(2) <0

G(s)=

where Z;(s) represents the Laplace transform of the sensor output,
Z(s) represents the plume source behavior; b is a scaling factor
chosen to be equal to 1/7, and 7, and 7, represent the time con-
stants for the rise and recover dynamics measured as 0.606s and
0.282 s, respectively.

To illustrate the impact of sensor dynamics on chemical concen-
tration mapping using raster-scan movements of the sensor, assume
a single source gas release where the leak is modeled by a
steady-state Gaussian plume model with concentration expressed
as [21]

c(xp, yp, 2p)

o (a (53)
" 4zxp,/D,D. exP( 4xp (D D @

Here, the concentration c is determined at a point (xp, yp, zp) rel-
ative to the plume source location (xs, ys, zs), Q is the source release
rate, v represents the wind speed along the xy direction, and D, and
D, are the diffusion constants in the yg and zg directions, respec-
tively. Additionally, 8p describes the angle between the defined
world x-axis, xy, and the xp direction of the plume. These eight
source terms fully define the Gaussian plume model and will be rep-
resented by the target state vector & = [xg, ys, zs, O, v, Dy, D_, 6p].
The model assumes a steady-state flow from a point source, where
advection dominates, and it also neglects diffusion in the xg
direction.

Using this model for the gas source, Fig. 4(a) shows an example
2D contour plot of the concentration distribution where the wind
direction is parallel to the positive x-axis. The plume source terms
in this example are: @ =[0.5m, 1.5m, 0.2m, 0.15kg/s, 4.0m/s,
4.0x 10" ' m?/s, 3.0 x 1073 m?/s, 0 deg].

To map the plume, the MPS™ gas sensor is moved along a
raster-scan trajectory over the area as illustrated in Fig. 4(a). The
concentration readings are recorded at constant height as the
sensor moves, and the measurements are then plotted with respect
to the sensor location to create a chemical concentration map.

OCTOBER 2025, Vol. 5 / 041002-3
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Fig.4 Simulated chemical concentration maps: (a) ground-truth
map with a M—axis raster trajectory; (b) map generated by a simu-
lated MPS™ sensor traveling at a speed of 9.0Vmax, showing the
effects of sensor dynamics; (c) dynamic compensation is
applied; (d) ground-truth map with a x-axis raster trajectory;
and (e) and (f) are distorted and compensated maps, respec-
tively; x-axis raster trajectory at a speed of 5.2V .«

Ignoring sensor dynamics, the contour map in Fig. 4(a) represents
the simulated chemical concentration distribution.

Considering the sensor dynamics, specifically the rise and recov-
ery time constants of the sensor (see Fig. 3), a conservative theoret-
ical maximum sensor velocity Vy.x can be determined as [8]

dmax

Vinax = T 3
where dp,x is the maximum straight line distance that would be
traveled if a raster-scanning pattern were followed over the area
being explored. The time constant 7 is chosen as the larger time
constant between 74 and ... As the sensor velocity exceeds
Vmax, the measurement quality begins to degrade due to the dynam-
ics of the sensor.

For example, if the sensor is moved at a velocity of 9.0V, the
resulting chemical concentration map shows distortion within the
contours as illustrated in Fig. 4(b). Thus, the results misrepresent
the true distribution shown in Fig. 4(a). Sensor dynamics can signif-
icantly affect mapping and source-term estimation performance and
thus need to be accounted for.

An inverse feedforward compensator is applied to account for
sensor dynamics to further improve performance and allow the
sensor to be moved faster than Vy,,x without significantly degrading
the measurement quality. The feedforward compensator is

1 (zs+ 1y

G O=301 O
where y represents the low-pass filter time constant chosen to be
equal to ten times the sensor time constant (y = 107). It is also
noted that the low-pass filter time constant is inversely proportional
to the filter’s cutoff frequency. Therefore, as y is increased, more
high-frequency content within the measured signal will be attenu-
ated. The discrete-time form used for implementation is given by

Y, Y b
Akl =+ — ) —zlk = 11— + zf[k — 11—

T 1At
where k denotes the current time instant, kK — 1 denotes the previous
time instant, At represents the effective time-step, and zs[k] repre-
sents the compensated sensor output.
The results in Fig. 4 show the effects in simulation of using the
MPS™ for chemical-concentration mapping. In Figs. 4(b) and

041002-4 / Vol. 5, OCTOBER 2025

4(c), the sensor travels in a raster trajectory along the y-axis at a
speed of 9.0V ,.x. Figures 4(e) and 4(f) show the simulated maps
for a raster trajectory along the x-axis at speed 5.2Vj.x. In each
case, sensor dynamics cause the resulting concentration contours
to smear. However, by applying dynamic compensation, the origi-
nal Gaussian plume contour map is recovered at speeds larger than
the theoretical Vi« as shown in Figs. 4(c) and 4(f). In the following
sections, the output z¢(7) of the feedforward compensator is used by
the source-term estimation process.

3.2 Source-Term Estimation Process Via Machine
Learning. The chemical concentration measurement zy(?), the
prior source-term knowledge, and the device’s state x(r) are pro-
cessed by a Bayesian estimator to generate a posterior density
(Fig. 2) to predict the unknown chemical leak source terms
a=[xs,ys,zs. Q, v, Dy, D, 0p] €A € R [22]. The posterior
density is found by Bayes’ rule:

P KNl alKDp(@lK] 2 ko : k — 17)
pGrKllzsTko -k — 11)

where p(alk]|zs[ko : k — 1]) is the prior, p(z¢[k]|a[k]) is the likeli-
hood, and p(zs[kllzs[ko : k — 1]) is the marginal likelihood.

First, a prior distribution p(a[k]|z¢[ko : K — 1]) is chosen to initial-
ize the Bayesian estimator. A uniform distribution U(A) over the
target source-term space A is chosen, but any available knowledge
about the source terms can be used to initialize the estimator.

Next, the likelihood p(z¢[k]|a[k]) is determined through a likeli-
hood model. In this case, the chosen likelihood model is the Gauss-
ian plume model shown in Eq. (2), which equates the time-averaged
gas concentration ¢ of a plume with source terms « at a specified
position. This model has been used extensively to characterize
many physical plumes [23,24], and more recently as a likelihood
model for Bayesian estimation of a chemical leak [10,25]. This
model is used to determine an expected concentration measurement
gilk] from the current location of the device with respect to each
estimate (particle) ;. The larger the difference between the
expected value g;[k] and the current measurement z;[k], the lower
the probability of the particle a;[£], i.e.,

Prlklla[k]) = N(ze[k]; gilk], r(0(sys.29 k1) @)

where N(-) is a normal distribution over a likelihood deviation r(-)
dependant on the posterior [10]

plalklizslko - k]) = (6)

”0—()(5,)'5,25) [k] ”2
maxvy ([0 ys.z5 [K1112)

r(a(xsqys.zs)[k]) =q (8)

In (8), 6(xy,ys.25)[k] denotes the vector of the standard deviations of
the estimated plume locations (xs, ys, zs) at time-step k and g € R*,
with R™ representing the set of positive real numbers, is the initial
likelihood standard deviation.

The Bayesian estimator is implemented using a Monte Carlo
approach in the form of a particle filter (PF) to iteratively update
the posterior prediction as new measurements are taken. The PF
uses a nonparametric approximation of the posterior distribution
as a sum of weighted source-term particles. The posterior and
prior approximations are denoted by [a[k], w[k]] and [ag, wo],
respectively. The PF is expressed as [26]

n
plalkllz;lko : k1) & ) wilkls(@lk] — ei[k]) ©)

i=1

where 7 represents the total number of particles, J(-) is the Dirac
delta function, and a; denotes the ith particle with associated impor-
tance weight w; such that >, w; = 1. If at each time-step the new
particle distribution is sampled from the prior distribution, the
importance weight is proportional to (7) and can be defined as [26]

wilk] o wilk — 1]p(z¢[k]lex; [K]) (10)
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During each iteration of the Monte Carlo process, the best guess
of the true plume parameters is determined by the minimum mean-
squared estimate (MMSE) approximation:

n
alkl ~ Y wilklai[k] (1)
i=1

The posterior distribution [e[k], w[k]] is then refocused onto
particles with large importance weights, and the importance
weight of each particle is reset to w = 1/5 to prevent degeneracy
of the distribution [26]. The refocusing process is achieved
through a systematic resampling method selected because of the
linear complexity O(n) of the method and its low variance [22].
Additionally, when the resampling occurs, Gaussian noise is
applied for each particle, where the standard deviations of the
noise for each source term are denoted by (o, oy, 0;, 0y, 0g,
6y, op,, op). This step helps prevent sample impoverishment
[26]. The estimated posterior [a[k], w[k]] is refined at each time-
step and by the information-theoretic motion planner as described
in the following section.

An advantage of this approach to leak source-term estimation is
that the posterior distribution is multimodal by nature and can easily
be extended to situations with multiple leaking sources. When con-
centration readings are taken within areas of overlapping leak
sources, the estimator can identify multiple likely leak sources con-
tributing to the readings and explore each of them independently
through the information-theoretic motion planner (Sec. 3.3). Addi-
tionally, after a leaking source has been identified, the area can con-
tinue to be explored, and the anticipated concentrations due to
previously identified leaks can be accounted for, allowing for the
identification of any additional unmodeled sources within the
search space.

3.3 Motion Planning. Information-based motion planning has
been used to assist in reducing source estimate uncertainty during
searches [11,27,28]. The information-based motion planner uses
the posterior [a[k], w[k]] and the device’s state x(f) to generate a
desired heading 6, for the user of the device to follow. To do
this, the local mutual information surface between measurements
zr and source-term estimates a over the search area at time-step k
is created. Next, relative to the current location of the device, the
point of the highest amount of mutual information is determined,
which is then used to compute the heading direction 6, for the
device. If the device is moved in this direction, then measurement
uncertainty is minimized and the Bayesian estimation process is
most effective.

Specifically, mutual information is computed by

I(z¢[k]; alk]lzelko : k — 1]) = I(z¢[k]; a[k])
= H(zs[k]) — H(zs[k]la[k])

where H(zs[k]) denotes the Shannon entropy of the measurement
and H(zs[k]|a[k]) denotes the Shannon entropy of the measurement
conditioned on the source-term estimates [29]. The leak source is
assumed to be stationary and unaffected by the location of the
device. Using probability distributions approximated by the particle
filter posterior, the entropy terms can be expressed as [30,31]

(12)

n
H(z k) ~ —j (Z wilklp(z [kl e [k]))
y€Z

i=1

13)

i=1

n
x log (Z wi[k]p(zf[knai[k])) dzy

n

> wilklp(z k]l [Ty

y€Z =]
x log (p(z[k]let;[k])))dzs

where Z = [min(zy), max(zy)] is the measurement range.

H(zrlk]lalk]) ~ —j (14)
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Examples of mutual information surfaces for source term e with
n=3 and n =3500 particles are shown in Fig. 5. These surfaces
indicate regions of high information (darker shaded areas), and
thus the device should be moved to (and take measurements at)
these locations to minimize uncertainty and make the Bayesian esti-
mation process more efficient.

Calculating the mutual information at each time-step can be com-
putationally intense. To improve real-time computation perfor-
mance, first, the integrals in (13) and (14) are solved through
Gauss-Legendre quadrature approximation techniques. Second,
the local mutual information surface is calculated for a set planar
distance r; from the device’s current position and the location of
highest information within this space, x; = [x;, x7,]. Finally, the
desired heading 0, is given by

6, = arctan <xy — My )
Xx — XIx

and reported to the user or the robot for motion planning. It is noted
that the calculation of the mutual information is the dominant
process at each update step. Searching over large spaces, the
number of particles used can be easily scaled to provide additional
estimates over the search space, but the extent to which the range of
the local information surface, r;, can be extended may be limited.
However, this could be improved through particle subsampling
over a larger local region to determine the information surface
used by the motion planner or by offloading the heavy mutual infor-
mation computation to a wirelessly connected ground station
computer.

15)

4 Prototype Device Design

A prototype device (see Figs. 6 and 7 for the device mounted on a
mobile ground robot) was created for testing and evaluation. The
device is 152 mm (~ 61in.) in diameter and 54 mm (~ 2 — 1/81in.)
tall. The housing and internal structures were 3D printed from poly-
lactic acid (PLA) plastic. The material cost to develop the device is
less than $280 USD. Figure 6(c) shows the main components and
the connections between the supporting hardware and the comput-
ing system. Specifically, the computational hardware consists of an
ODROID-XU4 single-board computer (SBC) with an octa-core
CPU (2.0 GHz max core speed), 2GB RAM, and USB 3.0 ports.
All algorithms were implemented under the robot operating
system (ROS) and ROS nodes were created to interface the SBC
with an MPS™ sensor for measuring chemical concentration.
The MPS™ sensor is positioned so that the air intake mesh is
flush with the top surface of the device to ensure good exposure
of the sensing chamber. An LCD display shows the desired
heading 6, from the motion planning algorithm in the form of a
compass needle. The display also displays chemical concentration
readings (in units of ppm) and the estimates of the current source
terms in & The SBC has on-board Wi-Fi for short-range wireless
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Fig. 5 Mutual information maps for (a) n=3 particles and
(b) n =3500 particles with randomized source terms
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communication with a local command station for remote data
logging and visualization. The device is equipped with a global
positioning system (GPS) module to provide state (position) infor-
mation. The entire device is powered by a 2S 1100-mAh battery as
shown in Fig. 6(c). The total weight of the device is approximately
400 g (0.88 1bs).

5 Experiments and Demonstration

5.1 Experimental Setup. The device is mounted to a custom-
built omniwheel robot (Fig. 7(a)). This allows consistent control of
the speed of the device during each experiment. The robot’s motion
is controlled by an ODROID-XU4 SBC that runs ROS and inter-
faces with a Robotis U2D2 for motor control. The robot is equipped
with potential-field collision avoidance and is controlled to move
freely throughout the search space.

The plume source, using the release system shown in Fig. 7(b), is
located at x7 =[0.64, 1.07, 0.40] m, relative to the bottom left
corner of the test volume, shown in Fig. 7(c). The elevated platform
measures 4.3 m (14 ft) X 2.7m (9 ft) X 1.8 m (6 ft). When methane
gas is released, box fans with baffles create a relatively uniform
flow with a wind speed of approximately 2.0m/s over the test
surface.

A motion capture camera system (10 OptiTrack Flex 13 cameras)
tracks the motion of the device mounted on a mobile robot platform.
The motion capture system has a sampling frequency of 120Hz. A
light-emitting diode projector projects and visualizes a simulated
plume on the surface of the platform during experiments. The
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desired heading 6, is also projected onto the test platform surface
to inform the operator how to control the movements of the
robotic system.

The robot can be controlled to move on the test surface for
source-term estimation and localization. The robot ensures that
the device is moved at a controlled desired speed and that the
height of the sensor above the ground remains constant during the
experiments. A conservative Vi, 1is calculated using the
maximum distance the device could move if following a raster
pattern along the platform width (2.0 m) for d,x and the slower
time constant between the rise and recover dynamics of the
sensor (0.6065s). The resultant Vi, of the device is 0.053 m/s.
Because dynamic compensation is applied to the sensor readings,
the robot is set to travel at a maximum speed of 0.1 m/s, approxi-
mately two times the calculated V.

5.2 Performance Via Hardware-in-the-Loop Experiment.
The developed device aims to streamline the identification of a
leaking chemical source and reduce the effort required by the user
to accomplish the task. As such, the performance of the device is
evaluated by testing whether, through the use of the device, the
localization and estimation of a leak source is improved. To this
end, HIL experiments are performed to test the hypotheses that if
the user follows the device’s suggested heading 6, while searching
for the leak, on average: (a) the source localization time will be
much faster and (b) the source localization error will be much
lower than if the device was moved in an uninformed way (i.e.,
unguided random motion). In the experiments, a simulated gas
plume (GADEN plume model) is used as the source. The GADEN-
generated plume realistically and accurately models gas dispersion
through filament gas dispersion theory over a time-evolving wind
flow vector field [32]. The reason for using a simulated plume in

Transactions of the ASME



this experiment is that the source terms can be precisely controlled
so that the experiments can more accurately evaluate the perfor-
mance of the device’s algorithms and test the hypothesis. In fact,
creating consistent and precisely controlled physical gas leaks for
multiple experimental trials is challenging and not within the
scope of this work.

For the HIL experiments, two different motion planning methods
are compared: (1) guided motion achieved by moving in the direc-
tion of the desired heading 0, as determined by the device and
(2) randomly moving the device within the search space simulating
the movement if a device is incapable of guiding the user. For
the experiments, the following assumptions were made about the
source: (1) position remains stationary, (2) parameters a are
bounded by A, and (3) source height is known. The source-term
search space is constrained to A so that only leak sources of sizes
appropriate to the relative scale of the experimental space were con-
sidered, reducing some computational effort of the particle filter. It
is noted that the algorithm could easily be altered to consider much
smaller or larger sources. Additionally, because the source height is
assumed to be known, the dimensionality of the estimation process
is reduced, which improves computational efficiency. However,
these parameters could be altered to account for height variability
in the leaking source with minimal effort. The parameters of the
simulated GADEN plume are shown in Table 1, while the parame-
ters of the Bayesian estimator (particle filter) are shown in Table 2.
Finally, although the leak rates used within the experiments are
fixed, the algorithm does not assume this fact. The Gaussian
plume model estimated by the algorithm represents the best time-
averaged fit for the concentrations seen within the environment.
Thus, if the leak source parameters were to vary over time, the algo-
rithm would estimate a model with parameters associated with the
median concentration ranges seen spatially throughout the search
space.

For the HIL experiments, the device samples the concentration of
the simulated GADEN plume at each specific location in the envi-
ronment [32]. The robot starts each trial at x = [3.6, 0.25] m. This
location was chosen as it represents one of the more challenging
start locations as it will not initially measure any concentration read-
ings and will have to explore the space to do so. Additionally, the
position makes it unlikely to randomly happen upon areas of very
high concentration which quickly allow for the leak to be identified.

Table 1 GADEN-generated plume simulation parameters
Parameter Description Value
Aty Time-step for plume updates 0.1s
Fy Filament release rate 350 filaments/s
F. Concentration at the center of the filament 90-110 ppm
F, Initial shape of the filament 3cm
F, Growth ratio 3cm/s?
Fy Additive white noise 0.03m
T Temperature 298K
P Pressure 1 atm

Table 2 Parameters of the particle filter used during the HIL
experiment

Particle filter parameters for simulated GADEN plume

A=1x,€[0.3,3.6] m, y; €[0.27,2.3] m, z, € [0.2, 0.2] m,
6 € [-10.0deg, 10.0deg],

Q €[0.7, 1.5] kg/s, v € [2.0, 4.0] m/s, Dy € [5.0 % 1073, 5.0 + 1072] m?/s,
D, €[5.0% 1073, 3.0 % 1072] m?/s

6,=0.018 m, 5, =0.018m, 5, =0.0m, 65 = 0.0055 deg, 6 = 0.015kg/s,
6,=0.01m/s, op, =0.01m?/s, op, =0.01m?/s

max = 6505, n=3500, ey =U(A), g = 650 ppm

Finally, the position is maintained between experiments to allow for
fair comparisons between the time required to localize the leak
source, while the effects of spatial position on the performance of
the estimation can still be explored by evaluating the trajectories
taken during each experimental trial. The HIL experiment consisted
of 30 trials for the guided motion method (following desired
heading 6,;) and 30 trials for the unguided motion method
(random motion).

5.3 Demonstration: Finding a Methane Gas Leak. Follow-
ing the HIL experiment, the device is used to localize a physical
methane gas leak to demonstrate the basic functionality of the
device in a near-real-world scenario. Here, the device was also
moved by following the device’s heading angle 6; and moving it
in a random fashion.

The methane gas source leak rate during the demonstration is
7.88x107° kg/s (15 standard cubic feet per hour). Three trials
were run for the guided motion method and three trials for the
unguided motion. The particle filter parameters are shown in
Table 3.

5.4 Performance Metrics. The metrics by which the device’s
performance was quantified are the time to localize the leak and the
localization error (error between the estimated leak location and
the true leak location). The localization time is defined as the
time when the two-norm of the standard deviation of the source
location estimate ot is below the threshold o, i.e.,

— /52 2
or = UXS+6yS<0L-

where 6. =0.12 m. The localization was deemed successful when
the device’s performance met this threshold within the allotted
650-s (tyax) time window.

The localization error e, the distance from the predicted plume
location (G, Qy,) to the true plume location (xr, Xr,), is calculated
as a percentage of the range of the search area:

(16)

O — @+ Gy — )
Vu —x0)? + u = )

Here, [xz, y.] and [xy, yy] represent the lower and upper bounds
of the x and y components of the search area, respectively; and (xr,
xr,) Tepresents the ground truth of the leak location.

X 100

eq a7

6 Discussion

6.1 Localization Time Performance. Using guided motion
for the HIL experiment, all 30 trials successfully located the
plume. The average localization time is 106s. For the unguided
motion, 26 trials successfully located the plume. The average local-
ization time is 186 s. The results are shown in Fig. 8, and they show
that the information-based guided motion method localized the
source on average 1.76 times faster compared to the random

Table 3 Parameters of the particle filter parameters used
during the live methane gas release demonstration

Particle filter parameters for physical methane leak

A=1x,€[0.3,3.8] m,y, €[0.2,2.4] m, z, €[0.2,0.2] m,
0 € [-10.0deg, 10.0deg],

0 €10.1,0.5] kgfs, v € [1.0, 4.0] m/s, Dy € [1.0x 1072,

1.0x 10717 m?/s,

D, €[1.0x 1073, 1.0x 1072] m?/s

6, =0.005m, 6, =0.005m, ¢, =0.0m, 69 = 0.0055 deg, 69 = 0.015kg/s
6,=0.01m/s, op, =0.01 m?/s, op, =0.01 m?/s

tmax = 6505, = 3500, ap =U(A), ¢ = 820 ppm
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Table 4 Localization time and error results from the live
methane gas release experiments

Localization Localization Localization
time (s) error (m) error (%)
Guided motion trial 1 39.0 0.249 4.9
Guided motion trial 2 90.0 0.466 9.2
Guided motion trial 3 37.0 0.225 4.4
Guided motion average 55.3 0.313 6.2
Unguided motion trial 1 140.0 0.381 7.5
Unguided motion trial 2 197.0 0.513 10.1
Unguided motion trial 3 193.0 0.086 1.7
Unguided motion 176.7 0.327 6.4

average

motion method. Application of a Welch’s #-test using a 99.7% con-
fidence level resulted in p = 0.00035, indicating the statistical sig-
nificance of the difference in average localization times [33].

Thus, the results confirm hypothesis (a) that when following the
guided motion, the average source localization time is much
faster than the unguided motion method. One observation is that
the results from the random motion method had more variability
in localization time. It is believed that moving randomly causes
the robot to spend more time in areas where the concentration read-
ings are low, which negatively impacts the performance of the
Bayesian estimator.

The results for localizing the physical methane gas leak are
shown in Table 4. Specifically, one example of the time evolution
of the estimated source locations is illustrated in Figs. 9 and 10
for the guided and unguided motion, respectively. Each black dot
represents an estimated (xs, ys) location of the source, and the
orange contours represent a composite Gaussian plume for the
MMSE & source terms. From Table 4, the average localiza-
tion time from the guided motion is 55.3's compared to 176.7 s
for the unguided motion. Thus, the guided motion method localized
the methane gas leak on average 3.20 times faster than the unguided
motion method.

6.2 Localization Error Performance. The median localiza-
tion distance errors for both the unguided and guided motion
methods are 6.0% (0.3 m, see Fig. 8). A Welch’s r-test using a
99.7% confidence level resulted in p = 0.92360, indicating that
there is no statistical difference between the two methods’
average localization distance error results for the simulated gas
leak scenario. Thus, this outcome invalidates the hypothesis (b).
Similar to the simulation results, the results of the physical
methane leak experiments yielded 6.2% (0.313m) and 6.4%
(0.327m) average error when the guided motion and unguided
motion methods were used, respectively. It can be seen in
Fig. 10, where unguided motion was used, that the majority of
the measurements taken by the device would have been in areas
where concentration readings were low. The results in Fig. 9,
where guided motion was used, show that many of the measure-
ments taken were downwind of the leak source where concentration
readings are higher. Despite this difference, the plume localization
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errors are comparable, showing that the source-term estimation
accuracy was not affected by differences in the time spent in low
versus high concentration areas. Thus, the overall accuracy of the
source-term estimation process is independent of the type of
motion planning used. This result suggests that even novice users
can effectively use the device to accurately locate the source. In
summary, these results demonstrate the effectiveness of the smart
sensor to estimate and localize an unknown leaking chemical
source.

6.3 Extension to Unstructured Environments. The demon-
strations using live methane gas sources offer good insight into
the performance of the device. However, there are still simplifica-
tions in place, such as the relatively uniform airflow created
within the laboratory setting. In unstructured environments, with
dynamic airflow, the estimation process is still expected to
perform well. Because the estimation process utilizes a time-
averaged concentration model, small fluctuations would not drasti-
cally affect the overall performance as the baseline behavior of the
leak source will still be identified. In situations where larger changes
occur over time, such as the wind direction shifting, or the leak size
increasing or diminishing, the leak can be localized and estimated
multiple times by continuing the search even after a leak is first
identified. This would allow for the time evolution of the leak to
be identified through the differences in the estimated leak source
terms over the search window. These performance aspects in
more complicated environments will be tested in future work.

7 Conclusions

This article focused on the development of a new smart and por-
table low-cost device that can be handheld by an emergency
responder or easily integrated with a UAS to automatically detect,
estimate, and localize dangerous chemical leaks. An information-
based motion planner guides the user to improve the process of
finding the source by over 1.7 times faster compared to randomly
moving the device during search. Experiments showed that the
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overall accuracy of the localization process was not dependent on
how the device was moved. In summary, the results demonstrated
the basic functionality of the device and its application for localiz-
ing a chemical gas leak in near-real-world scenarios.
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