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Information-based Supervised Learning of In-proximity
Effects for 3D Distance Estimation and Collision Avoidance

Jacob M. Anderson and Kam K. Leang’

Abstract—In-proximity effects (IPE) in 3D, specifically in-
ground, in-ceiling, and in-wall effects, experienced by a rotary-
wing aerial robot as it flies near obstacles are leveraged for
obstacle distance estimation and collision-free motion control.
Onboard motor commands and inertial measurement unit (IMU)
signals are processed to enable the robot to essentially “feel” the
presence of nearby obstacles through aerodynamic interactions.
The physics of IPE, along with Shannon information, are used
to tailor the input space and train a deep neural network (DNN)
to estimate the distance to ground, ceiling, and wall features.
Simulation and physical experimental results demonstrate reliable
and robust obstacle detection and collision avoidance with a
median distance estimation accuracy of 93.35%, 89.22%, and
90.67 % for ground, ceiling, and wall, respectively. This new form
of “sensing” is useful in environments with fog, smoke, dust, rain,
or snow, where traditional proximity sensors and vision-based
systems struggle to detect obstacles and determine distance.

Index Terms—Aerial Systems: Perception and Autonomy, Deep
Learning Methods, Motion and Path Planning

I. INTRODUCTION

OLLISION-FREE flight, within close proximity to and

around obstacles or through confined spaces, requires
accurate obstacle distance sensing and precise motion control.
This is especially true for rotary-wing aerial robots such as
quadcopters, where complex aerodynamic interactions between
the rotor wake and nearby obstacles induce in-proximity effects
such as in-ground, in-ceiling, and in-wall effects [1], [2]. These
near-obstacle effects can lead to an increased rate of collisions.
On-board sensors such as camera, sonar, and LiDAR are often
used to detect the presence of obstructions to keep the robot at
a safe distance for collision-free navigation [3]. However, such
sensors are bulky, heavy, and their weight limits flight time and
performance. Additionally, detecting and avoiding obstacles is
more difficult in challenging conditions that contain smoke,
dust, fog, rain, and snow. These conditions limit and hinder
the performance of traditional proximity sensors, affecting the
ability of the aerial robot to navigate safely [4].

We introduce a new method for estimating obstacle distance
that leverages the physics of in-proximity effects (IPE), specif-
ically in-ground, in-ceiling, and in-wall effects, along with
supervised learning and information theory. Our method only
uses motor commands and on-board inertial measurement unit
(IMU) signals to enable a rotary-wing aerial robot to estimate
the distances of nearby obstacles for collision-free navigation
(see Fig. 1). Using the underlying IPE physics, it is shown that
a set of deep neural networks (DNNs) can process the on-board
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Fig. 1: Quadcopter robot navigating through maze-like environ-
ments by estimating obstacle distance via IPE: (a) zigzagging
around three walls and (b) flying up a ramp, detecting and
flying around a wall, and then avoiding a small ceiling feature.

signals to estimate the distance to ground, ceiling, and wall for
motion control. In fact, as the robot approaches these features,
changes in airflow above, below, or between the rotors lead to
local changes in air pressure as illustrated in Fig. 2(a-c). Thus,
the aerial robot experiences changes in thrusts and moments
that affect its behavior. The experimental results in Fig. 2(d)
and (e) show that the required motor power decreases as the
robot approaches a ground and ceiling feature, respectively.
Similarly, the difference in motor power between the rotors
closest to and farthest from a wall feature also changes with
wall distance (see Fig. 2(f)). We also show that the Shannon
information of the vehicle behavior has decreased sensitivity to
expected behavior variation due to aerodynamic stochasticity
and increased sensitivity to direct behavioral changes due to
IPEs. By including these information terms in the DNN input
space, the distance estimation accuracy is greatly improved.

Figure 3 illustrates our concept, where on-board motor com-
mands and IMU signals are processed by an information-based
DNN to estimate obstacle distance for collision avoidance. Our
results show accuracies of 93.35%, 89.22%, and 90.67% to
estimate the distance to ground, ceiling and wall, respectively.
The inclusion of the information terms improves not only
the repeatability of the DNN training processes but also the
ability to generalize to situations not accounted for within
the training sets. Using our method, a quadcopter robot is
able to navigate its way through maze-like environments. For
example, Fig. 1(a) shows the robot zig-zagging through three
vertical walls without collisions. Figure 1(b) shows the robot
flying up a ramp, detecting and going around a wall, and then
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Fig. 2: (a)-(c) In-ground, in-ceiling, and in-wall effects. Differ-
ences in pressure (P relative to the atmospheric pressure F,)
induce forces F, and moments 7,, that impact vehicle behavior.
(d)-(f) IPEs observed through measured motor power as a
function of the normalized distance (dy/R) between the rotor
(with radius R) and obstacle.
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Fig. 3: Collision avoidance control scheme using estimated
distance of detected obstacles from IPE-informed DNN.

avoiding a small ceiling feature. Because motor commands
and IMU signals are used, our method can be readily applied
to nearly any rotary-wing platform just through a software
update, regardless of the robot configuration or sensor payload
capabilities. No new hardware or mechanical design is needed.

While many researchers have focused on modeling IPEs [5]-
[7] and designing controllers to account for IPE-induced dis-
turbances [8], [9], there is limited effort on leveraging IPEs
for obstacle distance estimation and collision avoidance. In-
ground effects (IGEs) were first used to estimate relative
ground proximity through changes in the motor inputs required
to maintain a vehicle’s position [10]. Empirical relations be-
tween motor input and vehicle position were used for efficient
trajectory planning [11]. An unscented Kalman filter and a
classifier were used to estimate in-wall-effect induced forces
and torques [12]. Ground obstacles were avoided with rein-
forcement learning [13]. Finally, wall obstacles were avoided
using an extended Kalman filter (EKF) and a ducted-rotor
shroud to amplify the in-wall effects [14].

Table I compares the capabilities of our approach to prior
works [10]-[14], where we can handle all three IPE effects
(ground, ceiling, and wall). Even though faster performance
has been achieved for detecting walls [14] through specialized

TABLE I: Comparison of capabilities of prior work and pro-
posed approach for ground (G), ceiling (C), and wall (W).

Prox. Distance Collision

Detect. Est. Avoid.

Powers et al. [10] G N/A N/A
“van Dam, van Kampen [13] G | NA G
"~ Gaoetal [11] GIC GIC G
* McKinnon, Schoellig [12] W NA ] NA
o Ding et al. [14] v W W
o Our Method  G/C/W GIC/W  GICIW

rotor shroud designs, our work strictly focuses on processing
onboard signals to estimate IPE in multiple directions. Thus,
our work advances the state-of-the-art by the following novelty
and contributions: (1) leveraging IPE and supervised learning
to estimate the proximity of obstacles within a 3D environment;
(2) incorporating Shannon information in the DNN input
space to improve estimation accuracy; and (3) demonstrating
collision-free navigation that utilizes the estimated obstacle
distance as feedback. Our approach for obstacle detection
is versatile and can be easily adapted to various multirotor
configurations to augment sensing capabilities in challenging
conditions and improve the robot’s overall performance.

II. GROUND, CEILING, AND WALL IN-PROXIMITY EFFECTS
The study of in-ground effects in helicopters dates back to

the 1950s [15]. More recent research has explored in-ceiling
effects (ICE) [11] and in-wall effects (IWE) [12], [14] for
multirotor robots. For IGE, as shown in Fig. 2(d), up to
10% less motor power is required to hover when the vehicle
approaches ground [5], [8], [16]. This is due to the rotor
downwash being obstructed and forced to disperse radially
against the ground surface [2]. Thus, the vehicle is ‘pushed’
away as it approaches the ground surface. Similarly for ICE [7],
[17], less motor power is required to hover near a ceiling
feature (see Fig. 2(e)). Thus, ICE ‘sucks’ the vehicle into the
ceiling and it is observed to be approximately 50% less than
IGE for the same vehicle. Both are often modeled by [15]

-]

where T, is the out-of-proximity effect thrust, R is the rotor ra-
dius, and z is the ground-to-vehicle distance. Recently, models
have been proposed to account for different multirotor config-
urations and rotor-blade geometry, for example for IGE [5]
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while for ICEs, the thrust ratio is shown to be [18]
T(z) 1 1 f1(0)
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Finally, for IWE, the experimental results in Fig. 2(f) show
that the motor-power difference increases as the wall distance
d,, decreases, where the percent change between the in-
proximity and out-of-proximity zones is approximately 7%.
For ducted rotors, it has been shown that IWE increases the
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magnitude of a horizontal force [14], [19] and torque acting on
the vehicle [6]. Thus, the vehicle is pulled into the wall and this
behavior can be modeled by an external force F, and a torque
T, into the wall (see Fig. 2(c)). From momentum theory and
conservation of energy, horizontal thrust is given by [14]

Fi = 1(dw/R)(v/20AP)3, )

where p is the air density, A is the area of the rotor disk,
P4 is the aerodynamic power of the spinning rotor, and ¥;(+)
is empirically fit and varies with the distance to a wall. It is
noted that the torque on the vehicle, which is experimentally
shown to develop due to IWEs, is not accounted for in existing
IWE models. The horizontal thrust, however, is shown to
increase as d,, decreases. In Fig. 2(f), the dip in the response
over d,, = [5,10] is believed to be caused by the combined
wall-ground interaction pushing the robot away from the wall
surface, therefore requiring a roll towards the wall to maintain
position. More studies are needed to test this hypothesis.

The measured results in Fig. 2(d)-(f) show that motor com-
mands contains information about IPEs. These findings, along
with the fact that data must be gathered to facilitate empirical
fittings for existing IPE models, motivate our approach to
utilize on-board signals, combined with supervised learning,
to estimate the distance to obstacles for collision avoidance.

III. PHYSICS-INFORMED INFORMATION-BASED DNN FOR
OBSTACLE DISTANCE ESTIMATION

A. Deep Neural Network Structure

A deep neural network is used to estimate the: (1) intensity
of the IPE and (2) distance to the obstacle surfaces, d:,. The
chosen DNN is a simple fully-connected feedforward network
using rectified linear units (ReLU) activation (Fig. 3). Each
network consists of only 3 hidden layers with 24 neurons.
During training, the mean-squared-error loss is evaluated, and
dropout stochastic regularization is applied.

Motivated by the underlying physics of IPEs and the results
shown in Fig. 2, the primary inputs to the DNNs are the motor
powers that relate to thrust and torque on the vehicle, i.e.,

alk] :{

B. DNN Information-Based Inputs to Handle Stochasticity

Due to the turbulent nature of the aerodynamic interactions,
there is a high level of stochasticity associated with the
DNN inputs, a. To enable the DNNs to better handle the
stochasticity, the DNN input space will include the information
of the inputs. In order to justify, in a theoretical sense, why
these inputs are useful for the stochastic process, we first define
the Shannon information of a variable 8 as [20]

1(B) = —log(p(B)), (©6)

where the marginal probability of §, assuming flight with no
obstacles, is determined relative to a normal distribution

1 —(B-w)?

e 202
V2no

[u1[k], uz[k], u3]k],ualk]] (ground/ceiling)

[T1.2[K], 3.4 K], 71 4 K], 72,3 K]] (wall) )

p(B) =4 (u,0)= )

The distribution p(f) is formed by fitting data gathered during
test flights, including both cases where the robot hovers at a
set position and where a trajectory is followed at speeds up to
0.0175 m/s without the presence of obstacles. Next, we assume
that the base measured input 8 varies from its expected mean
value by A; thus, the change in the variable can be written as

AB = |(u+A)—pul=A. (8)

However, the change in the information of the variable with
respect to A, using the marginal probability Eq. (7), is
2

AI(B) = I(1+ )~ I(1) = 5. ©)

Thus, for a Gaussian baseline, the change in information
is proportional to the squared deviation from the mean, A,
normalized by the squared standard deviation, o. This makes it
less sensitive to small fluctuations caused by the stochasticity
of the aerodynamic interactions compared to the standard
inputs (Eq. (8)), while amplifying statistically unlikely devi-
ations caused by direct IPEs. These information-based input
features are deterministic transforms of the measured signals,
and therefore, due to the data processing inequality, do not
increase the information content available to the DNN. Instead,
they introduce an additional coordinate that expresses each
measurement as a normalized deviation from a nominal, far-
from-obstacle, operating distribution. Since IPEs induce shifts
in the distribution relative to the nominal hover behavior (see
Fig. 2), this representation provides better-conditioned inputs
for a finite ReLU network to learn the mapping to obstacle
distance, improving the robustness to stochastic variability.
To provide a notion of temporal change to the networks, the
expectation of the information, H, over a time window wy,

k
APBK)=- ), pBLDlogpB).

J=k— Wh

= (10)
is used as an additional DNN input. This new pseudo entropy
quantity is analogous to Shannon entropy except that not every
possible outcome of the event is captured by the summation.
Both the information 7 and the pseudo entropy H provide better
conditioned inputs relative to the expected system stochasticity.
To the authors’ best knowledge, information-based terms have
not been used to assist in identifying IPEs but are important
as aerodynamic interactions are highly stochastic processes.

IV. SIMULATION STUDY: ESTIMATING CEILING DISTANCE

To initially understand the performance of the DNN distance
estimator subject to different inputs (motor power signals and
the information terms), a simulation and physical experiment
were performed for in-ceiling effect. The simulation uses a ba-
sic six-DOF rigid body model of a quadrotor [21], with a mass
of 1.25 kg, 0.265-m arm length, and inertial parameters (I,
Ly, I;) = (0.0232, 0.0232, 0.0468) kg:m?. The ICE behavior
is modeled by Eq. (1), which has been shown to accurately
model ICE for multirotor systems [17]. Figure 4(a) shows the
simulation setup, where the quadrotor moves vertically between
normalized distances d. /R € [1.2,6.30] from a ceiling obstacle,
following a sinusoidal trajectory over a 5-minute period (see
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Fig. 4: (a) Simulation setup for training/estimating ceiling
distance. (b) Training trajectory and input. (¢) DNN accuracy
estimates: (c) for thrust and thrust pseudo entropy, with differ-
ent time windows, and (d) trained with different combinations
of thrust, Shannon information, and pseudo entropy inputs.

Fig. 4(b)). Twenty simulation trials were performed with flight
data split 70-30 between training and test sets for each DNN.
The results for the distance estimation accuracy versus
entropy time windows are shown in Fig. 4(c). The window
lengths are between 2 to 280 measurements, normalized by the
robot’s vertical translational time constant. For each window
length, 200 DNNs were trained. The average estimated ceiling
distance over the test set is calculated by
ky
da:%z (1_ [|do[k]_dAo[k]|/dmaxD7 (11)
f k=0
where d, and d, are the true and estimated distance to an
obstacle, respectively, d,qx is an upper bound on the DNN
prediction range based on Fig. 2(e), and k; is the final trial
timestep. The DNNs using a pseudo entropy window length
of 40 measurements (a time window ratio of 1.6) resulted
in the highest median accuracy and the smallest variability
between trained DNNs. This window range will be used for
any network that uses the pseudo entropy as an input. When
the pseudo-entropy window deviated from 40 measurements,
the median accuracy decreased and the variability within the
configuration’s estimation accuracy increased greatly. This de-
crease in performance is believed to be due to the information
content continuing to be averaged down as the pseudo entropy
calculation window increases, leading to the diminished ability
to identify IPE from the signal as it is increasingly filtered.
Next, the DNNs were trained using the inputs: (1) [&], (2)
[@,1], (3) [@&,H], and (4) [@,1,H], where each input is averaged
across all motors. The results of the average estimated ceiling
distances are shown in Fig. 4(d), where 200 DNNs were trained
for each configuration. The DNNs using only the average
motor power achieved a median accuracy of 51.32% with an
interquartile range (IQR) of 10.06%. However, the DNNs with
information-based inputs performed better, with an average me-
dian accuracy improvement of 45.67%. The IQR, on average,
reduces to 15.6% of the IQR when only motor power is used.
This result illustrates the benefit of using information-theoretic

TABLE II: &, results from ASO testing on DNNs using
different inputs for ceiling distance estimation.

Simulated/Experimental ICE

DNN

mputs 1@ @0 (@ A (oL A)
[a] - 0.99/1.00  0.99/0.99 0.99/1.00
[a.]] 0.01/0.00 - 1.00/0.89  0.99/1.00
[@.H] 0.01/0.02 0.01/0.52 - 1.00/0.49
[a.l,H] 0.01/0.01 0.02/0.67 0.52/1.00 -

transforms of the vehicle behavior as additional inputs to the
DNN. Even though the information terms are direct transforms
of the motor power, they encode a sense of the expected vehicle
behavior, process stochasticity, and have increased sensitivity to
large IPE-induced changes. This supports the expected outcome
consistent with the previously derived theoretical justification
(Eq. (9)) for using information-based inputs. The effects of
stochasticity are reduced on the measured vehicle behavior and
the supervised learning, and thus the DNN is able to more
accurately identify obstacle proximity.

To determine whether the results with information terms
were statistically significant, the almost stochastic order (ASO)
test [22] is used. The ASO test calculates the ratio, &y, € [0,1],
to which the stochastic order between two cumulative distri-
bution functions (CDFs) is violated using

Sy, (D7 () = D5 (1) 2di
SWZ(DI,D2) = (WQ(D],DQ))Z

The constants D; and D, represent CDFs of the average
estimation accuracies attained using two different DNN ar-
chitectures, ¥, is the violation set where the stochastic order
is being violated between the two CDFs, and W5 (Dy,D;) is
the univariate /,-Wasserstein distance. An upper bound to the
violation ratio can then be formulated, giving the minimal &y,
value to ensure stochastic dominance, as

n+ny _
Emin(D1,D2,04) = &w, (D1,D2) — 4 / m(’l,zq’ Yon).

Here, n; and n, represent the number of samples in the D and
D, CDFs, respectively, 61 is the estimated variance term, ¢
is the level of significance, and ®~! is an inverse normally
distributed CDF. A DNN is determined to be stochastically
dominant over another when the CDF of its accuracy scores for
a test set compared to scores from another DNN architecture
result in an g, < 7. A significance level of o = 0.05 is
used (before adjusting for any pair-wise comparisons using the
Bonferroni correction) and 7 = 0.2 is chosen based on a balance
between Type I and Type II error rejection properties [22].

12)

Table II shows the ASO results where each €,,;, is the result
of the DNN configuration left of the cell compared to the
one listed above. It is noted that batches of 200 DNNs per
input configuration were used because through a bootstrapped
power analysis approach, batches of 200 DNNs were shown
to result in a power greater than 0.8 and any further increase
in the number of DNNs trained had a diminished effect on the
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uncertainty reduction of the ASO test. The ASO results show
that the information terms improve estimation accuracy with
statistical significance. However, the prediction performance
between the different DNNs that use information-based inputs
showed no statistically significant differences. Thus, the pseudo
entropy will be further evaluated as a DNN input, but the
Shannon information input will be the primary information-
based input for improving obstacle detection performance. It
is pointed out that calculating information is computationally
efficient and does not require a history of data.

To validate the results of the simulated ceiling obstacle
distance estimation, a set of DNNs was trained on experimental
data from trials using a physical quadrotor robot (Fig. 3). The
accuracy distributions of DNNs trained on the physical data
and using the same input configurations as the simulation case
are shown in Fig. 4(c) and Fig. 4(d). When the experimental
data is used, the prediction accuracy is consistently lower than
that seen in the simulation results. However, the variation of the
accuracy for both the different entropy calculation windows and
for each different input configuration closely follows the trends
seen in the simulation results. The lower accuracy is expected
as the measured quadrotor parameters are less ideal and contain
more variation than the simulated case. This leads to larger
spreads in the inputs provided to the DNNs corresponding
to each true obstacle distance seen during training, causing
less certainty in the final distance estimation. Again, the DNN
accuracy distribution results show that by including Shannon
information or Shannon entropy terms as inputs, the prediction
accuracy increases, and the training repeatability increases. The
ASO results also show that the accuracy improvements gained
are statistically significant.

These initial simulation and experimental results for the
ICE case provide evidence that a DNN can estimate the
distance to an obstacle based on IPEs observed only through
the motor power inputs. Also, by including information-based
terms, the accuracy of the DNN distance estimates and the
repeatability of the training process are greatly improved. Next,
we extend the DNN structure to include IMU and EKF signals
to experimentally estimate ground, ceiling, and wall distances,
and use this information to demonstrate collision avoidance.

V. ROBOT PLATFORM AND TEST ENVIRONMENT

Physical experiments were conducted on a custom-designed,
3D-printed quadrotor robot with 3-inch propellers (see Fig. 3).
The robot weighs 134 g, has footprint of 11.5 cm x 11.5 cm,
and hovers for 14 min. with a 2s 1100 mAh battery. The
Bitcraze Crazyflie 2.0 flight controller has an onboard IMU
with an EKF to estimate the robot’s state using motion capture
position and attitude measurements [23]. Attitude and position
PID control run at 500 Hz and 20 Hz, respectively.

Experiments are carried out in a 4.9 m (16 ft) x 3.7 m (12 ft)
x 2.1 m (7 ft) flight volume equipped with 22 motion capture
cameras (OptiTrack Flex 13 cameras) running at 120 Hz to
record the robot’s position and attitude. A ground station
computer (GSC) runs Ubuntu 18.04 and the Robot Operating
System (ROS) Melodic. The GSC controls the robot through a
wireless radio link. All DNN tasks (such as training), including
collision avoidance, are performed on the GSC through a ROS
node architecture. Acrylic glass sheets were used as obstacles.

Recorded motor input and IMU signals are low-pass fil-
tered to minimize noise. The filter is implemented using the
forward-backward filtering algorithm [24]. Alternatively, when
implementing trained DNNs for real-time obstacle distance
estimation, a discrete infinite impulse response filter is used

Yk = agulk] + (1 — ota)ylk — 1, (13)

where y and u are the filtered and raw input signal, respectively,
and oy € [0,1] is related to the cutoff frequency by

fe= T ayan s

The sampling frequency for all experiments is f; =20 Hz.

(14)

VI. EXPERIMENTAL STUDY: ESTIMATING GROUND,

CEILING, AND WALL PROXIMITY
A. Expanded DNN Input Space

In addition to the information terms, the DNN inputs are
further expanded with IMU and attitude estimation error to
estimate physical ground, ceiling, and wall obstacle distances.
These inputs are believed to improve the estimation accuracy
by encoding additional vehicle behavior. The onboard IMU sig-
nals are translational acceleration a = [ay, ay,a;] and rotational
velocity w = [y, @y, ®;]. The attitude error is determined by an
EKF, ©, = [0 — ¢, 0 — 0,  — y,,], where the estimated roll,
pitch, and yaw are denoted by ¢, 6, and W, respectively. The
measured attitude, denoted by a subscript m, comes from the
on-board IMU or measured with a motion capture system. Fi-
nally, the six different DNN input configurations for evaluation
are: I) = [a, h = [a,a,w], = [o,a,w,0,], I = [, a,w, I,
Is = [a,a,w, H], and Is = [a,a,w,I,0,]. It is noted that
this approach is vehicle-specific. However, to generalize the
process, for example, to larger airframes, higher flight speeds,
or to outdoor disturbances, nondimensional analysis is needed
to understand the key features for the DNN inputs. Future work
will focus on generalization of this approach.

B. DNN Training Details

For each type of obstacle, 200 DNNs were trained for each
separate input configuration. Flight data was gathered from
the physical quadrotor robot as it flew a sinusoidal trajectory
toward and away from each obstacle. The training process
is stochastic due to the initialization of weights and dropout
regularization for each network. Therefore, to assess the per-
formance of networks trained under each input configuration,
the average accuracy over the test set for each of the trained
200 networks using each input configuration is compared.

C. Results and Discussion

Examples of the DNN estimated distances trained on ground,
ceiling, and wall, using inputs Iy, I, and I5, respectively, are
shown in Fig. 5(a), 5(b), and 5(c). The ground and ceiling
distance estimation results are directly compared to estimates
developed by Gao et al. [11], where they used the power model
o=ald, /R)b + ¢, with the coefficients a, b, and ¢ determined
through optimization to fit the measured motor data. The model
was then inverted to estimate ground and ceiling distances.
The results show that the average ground estimation accuracy
is similar between the DNN estimator and the power model
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Fig. 5: Comparison between true, DNN estimated, and power
model [11] estimated distances over six trials for (a) ground,
(b) ceiling, and (c) wall cases where the DNNs were trained
on 14, 16, and IS5, respectively.
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(94.0% vs. 94.5%). However, for the ceiling case, the DNN
performed significantly better on average (91.2% vs. 82.4%),
with considerably lower variation between trials. It is noted
that no model was compared against for the wall case because
existing models are specific to a vehicle configuration [14]. The
results of distance estimation accuracy are shown in Fig. 6(a),
along with the change in median estimation accuracy, and
the spread of the accuracy for each input compared to I
results in Fig. 6(b) and 6(c). The ASO g, values associated
with the performance of each input are shown in Table III.
The baseline median accuracies for /;, for ground, ceiling,
and wall, are 81.04%, 74.35%, and 75.51%, respectively. In
Fig. 6(b), as IMU data, EKF error, and/or information-based
inputs are introduced, the median accuracy increases in all
cases. However, each of the best median accuracies came from
input with information-based terms. For ground with Iy the
accuracy is 93.35%; for ceiling with I the accuracy is 89.22%;
and for wall with /5 the accuracy is 90.67%. The ASO results in
Table III show that for each of these DNN configurations, the
prediction accuracy performance is statistically significant over
DNNs using the other inputs. Furthermore, when input with
information-based terms (I4-I) is used, the obstacle distance
prediction accuracy IQR was reduced on average by 6.96%,
9.84%, and ~ 0.00%, for the ground, ceiling, and wall cases,
respectively, compared to the IQR achieved by the baseline
DNNSs. This reduced range of the prediction accuracy leads to
increased repeatability of the DNN training process. For the
IQR range of the DNNs using non-information-based inputs
(I1-13), the wall distance accuracy IQR on average is 9.87%
lower than the ground and ceiling distance accuracy IQR.
This difference is equivalent to the largest reduction of IQR
achieved by either the ground or ceiling DNNs when the inputs
I4-I¢ were used. This may explain why adding information-
based inputs failed to result in any substantial IQR decrease
for the wall detection DNNs as the baseline accuracy estimate
performance was already far more repeatable.

D. Generalization
The trained DNNs associated with inputs 11, I3, 14, Is, and I
were subjected to multiple obstacles as shown in Fig. 7(a), (c),
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Fig. 6: (a) Accuracy of DNN estimation of ground, ceiling,
and wall distance versus input configuration. Change in the (b)
median DNN prediction accuracy and (c) variability for each
input configuration and obstacle type.

and (e) to test their ability to generalize. These inputs were cho-
sen because they achieved the most accurate obstacle distance
estimation from the previous experiment. For each trajectory,
10 trials were conducted, each trial lasted approximately 4.5
minutes. The accuracy results are shown in Fig. 7(b), (d), and
(f), and divided into zones, where Zone 1, 3, and 5 mimic
the trained behavior but the position relative to the edges of
the obstacle changes. Zones 2 and 4 are regions where the
IPE is near-constant and strongly felt, while Zone 6 and 7 are
areas where the robot transitions from strong IPE to weak IPE,
or vice versa. Finally, Zone 8 and 9 combine motion in both
perpendicular and horizontal motion relative to the obstacles,
with the first is in front of the obstacles and the latter is beyond
the obstacle. Many of the zones include movements that are
not captured within the training data sets.

For all cases, the results show the DNNs using information-
based inputs (4, I5, or Is) achieved a higher median accuracy
than the baseline case and, with the exception of the wall case,
also resulted in a lower accuracy spread. The average decrease
in the median accuracy for ground, ceiling, and wall is 1.41%,
9.68%, and 11.2%, respectively. The ground detection, which
resulted in the highest median training accuracies, also proved
to be the most robust when the environment changes. Similarly,
wall detection had the lowest median training accuracy and was
shown to be the most sensitive to environmental changes.

Finally, the combined results for each zone and input con-
figuration are shown in Fig. 7(g) and 7(h). The information-
based input Iy, 5, and I are grouped. In general, information-
based inputs generalized better to new environments within
the training sets. However, when the robot operated very
close to the obstacles, input I; that captures thrust or torque
through motor inputs performed similarly or better than using
information-based inputs in Zone 2 and 4. These zones show
that the IPE is relatively strong; therefore, the motor inputs are
sufficient to accurately estimate obstacle proximity. When the
IPE is weaker, additional input terms are needed to deal with
low signal-to-noise ratio and measurement uncertainty.

VII. COLLISION AVOIDANCE DEMONSTRATIONS

The DNN obstacle distance estimation is used as a feedback

signal for closed-loop collision avoidance. The control structure
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TABLE III: €,;, results of almost stochastic order testing on DNNs using different input configurations.
Ground/ceiling/wall distance estimation

Input

configuration 11 12 13 14 15 16
Il — 1.00/0.98/0.99 1.00/0.99/0.99 1.00/0.98/1.00 1.00/1.00/0.99 0.98/0.98,/0.99
2 0.30/0.05/0.01 — 0.48/0.99/0.99 1.00/0.99/1.00 1.00/1.00/1.00 1.00/0.99/0.68
3 0.47/0.04/0.01  1.00/0.02/0.01 - 1.00/0.86/1.00 1.00/0.06/1.00 1.00/0.99/0.55
14 0.06/0.03/0.01 0.16/0.03/0.01 0.09/0.30/0.00 — 0.00/0.00/1.00  1.00/1.00/0.77
15 0.07/0.01/0.01 0.17/0.31/0.01 0.10/1.00/0.00 1.00/1.00/0.01 - 1.00/0.98/0.00
16 0.04/0.02/0.26  0.11/0.01/1.00 0.09/0.01/1.00 0.66/0.01/1.00 0.60/0.07/1.00 -
1_1 iz ®I§l -gi—". S r * r * f r # ‘1 *[1 r ground, ceiling, and' wall opstacles as shown. in Fig. 8(a),
£ o6 odmi_ 1/®\\ NS i ! (b), and (c), respectively. First, the robot begins at x; and
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Fig. 7: Multiple obstacle configurations and trajectories for (a)
ground, (c) ceiling, (e¢) and walls. DNN distance prediction
accuracies versus zone for (b) ground, (d) ceiling, and (f) wall.
(g) Combined prediction accuracy versus input configuration.
(h) Median percent change from the training accuracy versus
zone and input configuration.

is shown in Fig. 3, where the outer loop, in the absence of
obstacles, generates attitude and thrust setpoint ¢y, 64, Wy, Ty]
to track a goal x, position. When nearby obstacles are present,
the DNN output augments the setpoint signal to the robot,
enabling it to avoid the obstacle. As shown in Fig. 3, each DNN
produces a distance estimate d, s cfc, or cfw, for ground, ceiling,
or wall, respectively. The in-proximity adjustment process then
determines the intensity with which the setpoint is modified to
avoid the obstacle. The adjustment mimics potential field (PF)
through a linearly increasing piecewise function based on the
predicted distance to an obstacle d,:

ﬁo(’b"’s()) a,’\0<ro
Vo = Bo(r()+50*do) ro <d, < (I‘()+S,,) (15)
0 dy > (ro+50)
Here, v,y is the resultant velocity that affects the next

desired position, while r, and s, are threshold distances and 3,
is a scaling factor that changes the maximum intensity of the
PF. The closer the estimated distance, the stronger the effect
of the PF to repel the robot away from the obstacle.

The collision-avoidance scheme is first applied to avoid

moves toward the goal position x,, with an attractive PF while
repelling away from any DNN-detected obstacles. Next, the
obstacles are removed and the same algorithm is run, where
the robot again traverses between the start and goal positions
as shown by the red trajectory. The results in Fig. 8(a)-(c)
demonstrate successful collision avoidance.

Finally, the demonstration in Fig. 8(d) shows that the robot,
running the same collision avoidance scheme with simultane-
ous IGE, ICE, and IWE estimation (running at 12.5 Hz), can
traverse a more complex environment that includes a ramp
with a level platform, connected to a wall feature, followed
by a ceiling obstacle. These features were not part of the
training data set. The demonstration utilizes two goal positions
(see Fig, 8(d)), 1 and x,, where the transition between
them occurs when the robot’s x —y planar position error from
the first goal decreases below a threshold distance, given by
V/(x—xg)%+ (y —Xgy)? < 0.03 m. As shown in Fig. 8(d), the
robot starts at the bottom of the ramp, detects the ramp feature
and traverse up the ramp without collision. At the top of the
ramp, it detects the ground and wall features and traverses
around towards the goal. As it moves to the goal, it detects
and avoids the ceiling. Running the same algorithm without
obstacles the robot traverses from the start location directly to
Goal 1, then directly to Goal 2 as shown in Fig. 8(e).

VIII. CONCLUSIONS

Simulations and physical experimental results demonstrated
the ability to use information-based supervised learning to
process onboard motor commands and IMU signals to estimate
the distance of the ground, ceiling, and wall. Reliable obstacle
detection with a median proximity estimation accuracy of
93.35%, 89.22%, and 90.67% for the ground, ceiling, and
walls, respectively, was achieved. Demonstrations showed the
successful detection and avoidance of nearby obstacles in a 3D
environment using this new form of “sensing”. This method,
while effective, is currently limited to slow to moderate vehicle
movements to ensure limited angular offset relative to obstacle
surfaces. As the vehicle speed and body angle offset increase,
the IPEs manifest differently. Accounting for these changes
and enabling greater travel speeds for IPE-based collision
avoidance remains an area for future work.
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