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Design and Analysis of
Discrete-Time Repetitive Control
for Scanning Probe Microscopes

This paper studies repetitive control (RC) with linear phase lead compensation to pre-
cisely track periodic trajectories in piezo-based scanning probe microscopes (SPMs).
Quite often, the lateral scanning motion in SPMs during imaging or nanofabrication is
periodic. Dynamic and hysteresis effects in the piezoactuator cause significant tracking
error. To minimize the tracking error, commercial SPMs commonly use proportional-
integral-derivative (PID) feedback controllers; however, the residual error of PID control
can be excessively large, especially at high scan rates. In addition, the error repeats from
one operating cycle to the next. To account for the periodic tracking error, a discrete-time
RC is designed, analyzed, and implemented on an atomic force microscope (AFM). The
advantages of RC include straightforward digital implementation and it can be plugged
into an existing feedback control loop, such as PID, to enhance performance. The pro-
posed RC incorporates two phase lead compensators to ensure robustness and minimize
the steady-state tracking error. Simulation and experimental results from an AFM system
compare the performance among (1) PID, (2) standard RC, and (3) the modified RC with
phase lead compensation. The results show that the latter reduces the steady-state track-
ing error to less than 2% at 25 Hz scan rate, an over 80% improvement compared with

PID control. [DOI: 10.1115/1.4000068]

1 Introduction

This paper specifically addresses the repetitive tracking error in
scanning probe microscopes (SPMs) through the design and ap-
plication of a plug-in repetitive control (RC) system. Scanning
probe microscopes, for example an atomic force microscope
(AFM), typically employ piezoactuators to position the tool tip
(probe) relative to a specimen for surface interrogation and modi-
fication [1]. Quite often, the positioning of the SPM probe follows
a periodic trajectory. For example, during AFM imaging a triangle
input signal is applied to the piezoactuator to raster the cantilever
probe back and forth over the sample surface. As the probe moves
over the surface, the tip-to-sample interaction, for instance the
vertical deflection of the cantilever, is measured and used to con-
struct an image of the sample’s topology [2]. Likewise, in nanoin-
dentation a SPM probe is scanned repeatedly across the sample
surface and at specific time instances the probe is lowered to
create nano-sized indents [3]. During the scanning operation, hys-
teresis and dynamic effects in the piezoactuator cause significant
positioning error that repeats from one operating cycle to the next
[4,5]. Unfortunately, the error causes distortion in images and fab-
ricated features [1], and therefore limits the performance of SPMs.
It is pointed out that in nanofabrication, the size, shape, and spac-
ing of nano features are important to their functionality. As a
result, precise control of the positioning of the SPM-probe tip is
needed for fabricating uniformly distributed patterns of nano-
sized features for the growth and investigation of novel structures;
and to obtain high-resolution, undistorted images of the sample
[6]. A discrete-time repetitive controller is proposed to account for
the periodic tracking error. The main contributions of this paper
include the analysis of the performance of discrete-time RC for
SPM from a practical viewpoint and experimentally investigating
the performance of RC on an AFM system. As previously men-
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tioned, an advantage of the proposed plug-in RC system is that it
can be easily integrated into an existing feedback controller in
SPMs to handle tracking error due to periodic motion and/or to
reject periodic exogenous disturbances. The proposed repetitive
controller consists of two simple phase lead compensators, one to
ensure robustness and the other to minimize the steady-state track-
ing error.

Repetitive control, a concept based on the internal model prin-
ciple [7], is suited for tracking periodic trajectories [8,9]. Com-
pared to traditional proportional-integral (PI) or proportional-
integral-derivative (PID) feedback controllers for SPM [10],
where careful tuning is required and the residual tracking error
due to hysteresis and dynamic effects persists from one operating
cycle to the next, RC has the ability to reduce the error as the
number of operating cycles increases [11]. The RC approach
achieves precise tracking of a periodic reference trajectory by in-
corporating a signal generator within the feedback loop—the sig-
nal generator provides infinite gain at the fundamental frequency
of the reference trajectory and its harmonics. Such a controller has
been investigated to address run-out issues in disk drive systems
[11,12], to generate AC waveforms with low harmonic distortion
[13], and to improve the performance of machine tools [14,15].
However, past work on RC for piezo-based systems and SPMs is
limited [16], but it includes a feedback-linearized controller with
RC for a piezopositioning stage [17]. This work specifically con-
siders the RC approach for AFM and its implementation in dis-
crete time.

A repetitive controller offers many advantages for SPM appli-
cations. For one, it can be plugged into an SPM’s existing feed-
back controller to enhance performance for scanning operations.
When the piezoactuator scans at a location offset from its center
position, the periodic tracking error during scanning can be
handled by the repetitive controller, and the resident PID control-
ler, can be used to account for low frequency dynamics such as
creep or drift [18]. But when the reference trajectory is not peri-
odic, the RC controller can be disabled to allow the feedback
controller (and/or a feedforward-based controller [6]) to compen-
sate for the tracking error. Compared to iterative learning control
(ILC) [19,20], which is an effective approach that exploits the
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process of repetition to compensate for hysteresis and dynamic
effects in piezoactuators [21,22], RC does not require the initial
condition to be reset at the start of each iteration trial [9]. Reset-
ting the initial conditions adds another level of complexity during
implementation. Furthermore, the design and implementation of
RC does not require extensive modeling of the system, where as
model-based approaches require relatively accurate models of the
dynamics and nonlinearities [6]. One of the disadvantages with
open-loop feedforward control is the lack of robustness due to
variations in the system dynamics, for instance under cyclic load-
ing [23], with aging effects [24], or through temperature variations
[25]. On the other hand, the feedback mechanism built into RC
provides robustness to parameter variation. At the expense of re-
duced modeling, the RC approach does require accurate knowl-
edge of the period of the reference trajectory. But in SPMs used
for scanning-type applications such as imaging and nanofabrica-
tion, the reference signal’s period is often known in advance. An-
other advantage of RC is that it can be easily implemented on a
microprocessor as it does not require the inversion of a system
model. Therefore, newly available high-speed data acquisition and
control hardware [26] can take advantage of the simplicity of RC.
This means that RC is attractive for controlling video-rate AFM
imaging systems with the available high-speed digital hardware
[27,28]. Analog circuit designs have been proposed for imple-
menting RC [29].

In the design and application of RC, the major challenges are
stability, robustness, and good steady-state tracking performance.
The stability and robustness problems have been addressed by
incorporating a low-pass filter in the RC loop [30]. Likewise, a
simple frequency aliasing filter can be used to stabilize RC and
this approach has been applied to a gantry robot [31]. However, a
tradeoff is made between robustness and high-frequency tracking
when such filters are used. The steady-state tracking performance
of RC was considered in Refs. [32,33] by cascading a compensa-
tor to account for the phase of the low-pass filter. Also, high-order
RC was studied in Ref. [12] to improve performance and robust-
ness in the presence of noise and variations in period-time. The
design of pole-placement RC was considered in Ref. [34]. In light
of previous work on RC, this paper focuses on designing an RC
system that is both robust and achieves minimum steady-state
error. Easy-to-tune linear phase lead compensators are incorpo-
rated into the RC design to enhance performance. One advantage
of the phase lead compensators is they can be easily implemented
in discrete time; therefore, the design can be plugged into existing
SPMs to control the positioning of the piezoactuator. The effects
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Fig. 1 The atomic force microscope (AFM): (a) A schematic of
the main components and (b) typical scan paths in the lateral
directions during AFM imaging

of the RC parameters are analyzed and suggestions for how to
tune them are provided. Lastly, the performance of RC is demon-
strated on a piezoactuator used in a commercial AFM system.
The remainder of this paper is organized as follows. First, in
Sec. 2, the basic operation of AFM is presented to show the con-
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Fig. 2 The repetitive control (RC) feedback system: (a) The block diagram of the proposed RC
system, (b) positive feedback system for stability analysis, and (c) positive feedback system repre-
senting the block diagram in part (a) for stability analysis
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Fig. 3 Magnitude and phase versus frequency for signal gen-
erator zN/(1-zN), where z=e/*Ts

trol problem of interest. Then, Sec. 3 discusses the RC method
and the analysis of the proposed RC design for AFM. Sections 4
and 5 discuss the simulation and experimental results on AFM
tracking and imaging. Finally, Sec. 6 offers the concluding re-
marks.

2 Atomic Force Microscopy

In AFM, a microcantilever (with a sharp tip at its distal end) is
positioned relative to a sample using a piezoactuator as shown in
Fig. 1(a). The piezoactuator positions the AFM probe tip along the
x,y, and z axes. For example, in the contact, constant-height im-
aging mode, the piezoactuator rasters the tip laterally (x and y) at
a fixed height above the sample surface. The x and y scanning
motions are shown in Fig. 1(b). As the tip moves over the sample
surface, the tip-to-sample interaction causes, for instance, the can-
tilever to deflect. The cantilever’s deflection is measured with a
laser and photodetector. The cantilever’s deflection is used to con-
struct an image of the sample’s surface. The AFM is also used for
surface modification and metrology [1].

One of the major performance limitations of AFM is tracking
errors between the AFM probe and sample surface in the lateral
and vertical directions. The errors lead to excessive tip-to-sample
forces, causing image distortion, and in nanofabrication, causing
poor dimensional tolerance of fabricated features. For scanning
applications such as imaging, precision tracking of the periodic

Feedback *@ )
~

scanning motion is needed to obtain accurate images of the sur-
face topology. Therefore, the control objective is to precisely track
the periodic lateral scanning motion (see Fig. 1(b)).

3 Repetitive Control Design and Analysis

Repetitive control is a direct application of the internal model
principle [7], where high-accuracy tracking of a desired periodic
trajectory, with period 7, is achieved if the controller consists of
the transfer function of the reference trajectory [8,9,30]. One such
controller is a signal generator with period 7),.

The discrete-time closed-loop system with RC for the AFM
system in consideration is shown in Fig. 2(a). The piezoactuator
dynamics, assumed to be linear, are represented by G,(z), where
z=e/*Ts, w e (0, 7/T,). In the block diagram, G(z) is a feedback
controller, such as a resident PID controller in the SPM; Q(z) is a
low-pass filter for robustness; k. is the RC gain; and P;(z)=z"
and P,(z)=z"2, where m,,m, are non-negative integers, are posi-
tive phase lead compensators to enhance the performance of the
RC feedback system. It is emphasized that the phase lead com-
pensators 7”1 and z™2 provide a linear phase lead of (in units of
radians)

01,2(0)) =m1,2Tsw (1)

for w e (0,7/T).

To create a signal generator with period T, the repetitive con-
troller in the inner loop contains the pure delay z™V, where the
positive integer N=T,/T is the number of points per period 7);
and T is the sampling time. An analysis of the performance of the
closed-loop system is presented below, where the following as-
sumptions are considered.

ASSUMPTION 1. The reference trajectory R(z) is periodic and
has period T,.

ASSUMPTION 2. The closed-loop system without the RC loop is
asymptotically stable, i.e., 1+G.(2)G,(z)=0 has no roots outside
of the unit circle in the z-plane.

Remark 1. Assumptions 1 and 2 are easily met for SPMs. For
example, during scanning applications such as imaging, the lateral
movements of the piezoactuator are periodic, such as a triangle
scanning signal (see Fig. 1(b)). Also, most SPMs are equipped
with feedback controllers G.(z) to control the lateral positioning,
which can be tuned to be stable.

The transfer function of the signal generator (or RC block, Fig.
2(a)) that relates A(z) to E(z) is given by
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Fig. 4 Techniques to account for hysteresis in RC design: (a) Feedback-
linearization approach and (b) feedforward hysteresis compensation [38]
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In the absence of both the low-pass filter Q(z) and positive phase
lead P,(z)=z™, the poles of the signal generator are 1—z"V=0;
therefore, the frequency response of the signal generator shown in
Fig. 3 reveals infinite gain at the fundamental frequency and its
harmonics w=2nm/T,, where n=1,2,3,.... The infinite gain at
the harmonics is what gives the RC its ability to track a periodic
reference trajectory. As a result, RC is a useful control method for
SPM in which the scanning motion is repetitive, such as the lateral
probe motion during AFM imaging. Unfortunately, the RC also
contributes phase lag which causes instability. Therefore, the sta-
bility, robustness, and tracking performance of the RC closed-loop
system must be carefully considered. In the following, these is-
sues will be addressed, and the conditions for how to choose the
RC gain k. are presented, along with a discussion of the effects of
the phase lead compensators P(z) and P,(z) on the performance
of the closed-loop system.

3.1 Stability of RC System. To analyze the stability of the
closed-loop RC system shown in Fig. 2(a), consider the transfer
function relating the tracking error E(z) and the reference trajec-
tory R(z),

E(z) 1-H(z) 3)
R(z) 1-H(z)+[(kePr(z) - DH(2) +1]1G,(2)
where H(z)=0(z)z""V*) and G,(2)=G(2)G,(z). Multiplying the
numerator and denominator of Eq. (3) by the sensitivity function
S(z2)=1/(1+G,(z)) of the feedback system without the repetitive
controller, the following transfer function is obtained

E(z) [1-H(2)]S(z)
R(z)  1-HQ@[1 - kPy(2)G,(2)S(2)]

The S,.(z) shown above is referred to as the sensitivity function of
the closed-loop RC system.

The stability conditions for the RC system can be determined
by simplifying the block diagram in Fig. 2(a) to the equivalent
interconnected system shown in Fig. 2(b), which results in Fig.
2(c). Then the RC sensitivity transfer function (4) can be associ-
ated with the M(z) and A(z) terms in Fig. 2(c) for stability
analysis.

ASSUMPTION 3. 1-H(z) is bounded input-bounded output
stable.

By Assumption 2, the sensitivity function without RC, S(z), has
no poles outside the unit circle in the z-plane, so it is stable.
Likewise by Assumption 3, 1—H(z) is stable. Replacing z=¢/*Ts,
the positive feedback closed-loop system in Fig. 2(c) is internally
stable according to the small gain theorem [35] when

Sie(2) = )

|H(2)[1 = ki P2(2)G,(2)S(2)]|
= [H(T)[1 - ket "G () S(eT)]| < 1 (5)

for all w e (0,/T,), where the phase lead 6,(w) is defined by Eq.
(1). By satisfying condition (5), the closed-loop RC system shown
in Fig. 2(a) is asymptotically stable.

In general, both the RC gain k. and the phase lead 6,(w) affect
the stability and robustness of RC as well as the rate of conver-
gence of the tracking error. In the following, condition (5) is used
to determine explicitly the range of acceptable k. for a given Q(z)
and G,(z). The effects of the phase lead 6,(w) on robustness and
the phase lead 6,(w) on the tracking performance will be dis-
cussed.

3.2 The RC Gain and Robustness. Let 7(z) represent the
complimentary sensitivity function of the closed-loop feedback
system without RC, that is, 7(z)=G,(z)S(z). Suppose the magni-
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Fig. 5 A block diagram of the experimental AFM system. An
external computer running custom c code was used to imple-
ment the control algorithm.

tude of the low-pass filter |Q(z)| approaches unity at low frequen-
cies and zero at high frequencies, hence |Q(e/“Ts)|<1, for w
€ (0,7/Ty). Therefore, condition (5) becomes

|1 — k2T (eT5)| < 1 = (6)

1
l0(e"s)]
Replacing the complimentary sensitive function with T(e/“Ts)
=A(w)e/®) where A(w)>0 and 6(w) are the magnitude and
phase of T(e/®Ts), respectively, Eq. (6) becomes

1 - ki A(w)el 2] < (7
Noting that e/%=cos(6)+; sin(6) and k,.>0, Eq. (7) simplifies to
— 2k, A(w)cos] O7(w) + O5(w)] + k2A%(w) <0 (8)

which leads to the following two conditions for the RC gain k.
and linear phase lead 6,(w) to ensure stability:

2 cos[ Op(w) + 65(w)]
A(w)

0<ke< )

and
—7/2 <[ 0 w) + 6,(w)] < 72 (10)

By Eq. (10), the lead compensator P,(z)=z"2 accounts for the
phase lag of the closed-loop feedback system without RC. In fact,
P,(z) enhances the stability margin of the closed-loop RC system
by increasing the frequency at which the phase angle crosses the
*90 deg boundaries. This frequency will be referred to as the
crossover frequency.

The RC gain k. can be designed to take into account uncertain-
ties in the plant model. In particular, consider an overall model
uncertainty for the closed-loop system (without RC) of the follow-
ing form:

T,(2) =T)[1 +A(z)] (11)

where ||A(z)|| = y. Taking this into account, condition (9) becomes

0< krc < 2 COS[@T[‘(O)) + 62((1))]
A(w)[1+7]

Hence, the value of the RC gain k. is inversely proportional the
size of the plant uncertainty. In summary, the effects of unmodeled
dynamics can be taken into account by choosing a relatively con-
servative RC gain through Eq. (12).

In the above analysis, the effects of hysteresis were not consid-
ered explicitly in the RC design. To keep the analysis simple, an
approach to minimize the affect of hysteresis for RC is optimizing
the resident feedback controller G.(z) in such a way that the
closed-loop performance accounts for the hysteresis behavior over
the bandwidth of interest. This is the approach considered in this

(12)
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Fig. 6 The frequency response of piezoactuator along the x-axis. The solid
line is the measured response, the dash-dot line represents the linear
continuous-time model G(s), and the dash line is the linear discrete-time
model G,(2) using mATLAB function c2d with zero-order hold and sampling

frequency of 10 kHz.

work. Additionally, it has been shown that high-gain feedback
control is effective for significantly reducing hysteresis behavior
[36], therefore, keeping 7y as small as possible. Another approach
is depicted in Fig. 4(a), where an internal feedback loop is used to
linearize the plant dynamics [17]. Likewise, the hysteresis can be
accounted for using model-based feedforward compensation as
illustrated in Fig. 4(b) [37,38]. Therefore, compensating for the
hysteresis effect permits the application of the analysis presented
above.

3.3 Tracking Performance. Aside from designing RC for
stability, it is important to also consider the degree by which the
tracking error is reduced relative to the tracking error of the origi-
nal feedback system (without RC). By Assumption 1 where the
reference trajectory R(z) is periodic, the tracking performance of
RC can be analyzed by examining the sensitivity function of the
RC system at the frequency multiples of the fundamental, w
=k(2w/T,)=kw, for k=1,2,3,..., within the bandpass of the
low-pass filter Q(z).

Recalling Eq. (4), the magnitude of the tracking error at mul-
tiples of the fundamental w,, is given by

[E(e00)| = [S,o(eFen)R(ei )

1 — H(eM*r) i
= ik ik ik i |S(ej w")|
1= H(e™r)[1 = ke Po(e”7) G, (e7r) S(e7) ]
X|R(ejkwp)
=|W(e )| X |S(e™*r)| X |R(e/r)| (13)

where W(e/*“») is the effect due to the RC. Ideally without the
low-pass filter Q(z), |W(e/*“r)|=0 at the multiples of the funda-
mental frequency w,. However, the addition of Q(z) for stability
causes phase lag in the RC, which shifts the point of maximum
gain of the signal generator created by the pure delay z7V [17,32].
Such a shift inadvertently lowers the RC gain at the harmonics
and thus negatively affects the tracking performance of the RC
system. But most of the phase lag can be accounted for using the
linear phase lead 6;(w) in the RC loop to improve the tracking
performance [33]. Because N> m;,, the modified delay zV*") is
causal and can be easily implemented on a microprocessor. There-
fore, the value of the phase lead ,(w) can be adjusted through m,
to minimize the factor |[W(e/*»)| over the frequency range of the
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bandpass of Q(z). It is shown below that such a tuning process can
be done in simulation and then implemented on the experimental
system.

4 Design of RC for AFM Scanning

The repetitive control system in Fig. 2(a) was implemented on
a commercial AFM system. The details of the implementation and
experimental results are presented below. First, the AFM system
and the modeling of the piezoactuator linear dynamics are de-
scribed. Then a simulation study is presented before implementing
the discrete-time RC for AFM scanning.

4.1 The AFM System. The AFM system is the Molecular
Imaging (now part of Agilent Technologies, Santa Clara, Califor-
nia) PicoPlus model. The block diagram of the AFM and control
system is shown in Fig. 5. The AFM uses a piezoelectric tube-
shaped actuator for positioning the cantilever and probe tip (see
Fig. 1(a)). The AFM was customized to permit the application of
control signals to control the movement of the piezoactuator in the

(@)
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Fig. 7 The measured responses of the PID controller to (a) a
step reference and (b) triangle references at 1 Hz, 5 Hz, and 25
Hz. (c) The tracking error for the triangle reference signals as-
sociated with plot (b).
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three coordinate axes (x, y, and z). Inductive sensors were used to
measure the displacements of the piezoactuator and the signals
were accessible through a custom signal access module (Figs. 1(a)
and 5). The gain of the inductive sensors were 96 um/V and
97 pm/V in the x-axis and y-axis, respectively. A PC computer
and a data acquisition system running custom C code were used to
implement the RC control system. The sampling frequency of the
data acquisition and control hardware was 10 kHz.

The RC was applied to track a periodic reference trajectory in
the x-axis as an illustrative example. This axis was the fast-
scanning axis because the probe tip moves back and forth at least
100 times faster than the up and down motion in the y-direction
during imaging. For example, a 100X 100 pixel image requires
the AFM tip to scan back and forth across the sample surface 100
times and slowly move from top to bottom (see Fig. 1(b)). It is
noted that cross-coupling effects in piezotube actuators were not
considered in this work. Interested readers are referred to the work
of Tien et al. [39], for additional details to further improve track-
ing performance.

4.2 Modeling Piezoactuator Dynamics. A linear dynamics
model of the piezoactuator was obtained for designing the RC
system. The model was estimated from the measured frequency
response function. The frequency response along the x-axis was
measured using a dynamic signal analyzer (DSA, Hewlett Pack-
ard, Model 35670A). The response was measured over small

ranges to minimize the effects of hysteresis and above 1 Hz to
avoid the effects of creep [6]. The resulting frequency response
curves are shown in Fig. 6. A linear 12th-order transfer function
model G(s) (dash-dot line in Fig. 6) was curve fitted to the mea-
sured frequency response function. The continuous-time model
was then converted to the discrete-time model G,(z) using the
MATLAB function c2d with a sampling frequency of 10 kHz
(shown by the dashed line in Fig. 6).

4.3 PID Control. Commercial SPMs use PID feedback con-
trollers to minimize hysteresis, creep, and the effects of the vibra-
tional dynamics [10]. Prior to integrating the RC, a PID controller
was designed for the piezoactuator to control the motion along the
x-axis. The PID controller is given by

G.(2)=K,+ K(i> + Kd<u) (14)
z-1 z
where the Ziegler—Nichols method [40] was used to tune the pa-
rameters of the controller to K,=1, K;=1450, and K;=0.0002.
The PID controller was implemented at a sampling frequency of
10 kHz. The performance of the PID controller to a step reference
is shown in Fig. 7(a). It can be observed that without PID control,
the open-loop response shows significant overshoot. Also, after 30
ms creep effect becomes noticeable. Creep is a slow behavior and
after several minutes the tracking error can be in excess of 20%

Table 1 Stability of RC system for different low-pass filter cutoff frequencies and phase lead
zm2
Low-pass filter O(z)’s cutoff frequency
(Hz)
Phase lead m, 250 500 1000 2000 4000

0 Stable Unstable Unstable Unstable Unstable

2 Stable Unstable Unstable Unstable Unstable

4 Stable Stable Unstable Unstable Unstable

6 Stable Stable Stable Unstable Unstable

8 Stable Stable Stable Stable Stable
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Fig. 9 Simulation results showing the tracking performance
and error for scanning at 25 Hz, where (a1) and (b1) belong to
RC with k,.=0.40 and no phase lead; (a2) and (b2) belong to RC
with phase lead m,=7 and k,.=1.1; (a3) and (b3) belong to RC
with phase leads m;=6, m,=7, and k,.=1.1.

[21]. On the other hand, the PID controller minimized the over-
shoot and creep effect.

The response of the PID controller for tracking a triangular
trajectory at 1 Hz, 5 Hz, and 25 Hz are shown in Fig. 7(b). Tri-
angle reference signals are commonly used in AFM imaging. The
maximum tracking errors for the three cases are shown in Fig.
7(c). The error at 1 Hz (low speed) was relatively small, approxi-
mately 1.48% of the 10 wm range (=5 wm). However, at 25 Hz
(high speed) scanning the error was unacceptably large at 10.70%.
Due to the vibrational dynamics and hysteresis effects, open-loop
AFM imaging is limited to less than 2-3 Hz. The objective was to
reduce the tracking error by adding a repetitive controller to the
PID loop.

4.4 Simulation Study. Simulations were done to illustrate the
design process and to study the effects of the RC’s parameters on
performance. The linear dynamics model G,(z) determined from
the measured frequency response described above was used in the
simulation. The first step is to design the low-pass filter and phase
lead 72 for stability and robustness. Afterwards, the phase lead
7™ was designed to minimize the steady-state tracking error. The
steps are outlined as follows.

First, the RC was designed for stability and robustness. This
involves designing a low-pass filter Q(z) and adding phase lead
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Fig. 10 Maximum error versus phase lead parameter m,. For
the experiments, m;=6 gave smallest error.

via m, to satisfy the conditions given by Egs. (9) and (10). The
following low-pass filter was used in the RC loop,

a

0(z)= (15)

z+b
where |a|+|b|=1. The cutoff frequency o of the low-pass filter
was chosen below the £90 deg crossover frequency to satisfy Eq.
(10). The low-pass filter cutoff frequency is limited by the cross-
over frequency. Also, the cutoff frequency limits the achievable
scan rate to about one-tenth of the cutoff frequency, i.e., wy/10.

The phase response 6(w) of the closed-loop feedback system
without RC and different phase lead 6,(w) are shown in Fig. 8.
Without phase lead (m,=0) the =90 deg crossover frequency was
approximately 486 Hz. This value sets the maximum cutoff fre-
quency for the low-pass filter and the maximum scan rate.

Next, simulations were done to show the tracking performance
of RC. The chosen cutoff frequency for Q(z) was 250 Hz and
zero-phase lead (m,=0) was used. Therefore, the maximum scan
rate is 25 Hz. It is noted that for higher rate scanning, the cutoff
can be increased, but only up to 486 Hz when m,=0 (see Fig. 8).
The 250 Hz cutoff frequency was chosen because it provided a
safety margin of approximately 2. Then, the RC gain was deter-
mined by satisfying Eq. (9), for instance picking k,=0.40. The
simulated tracking response for £25 wm scan range at 25 Hz is
shown in Fig. 9. The first two plots, Figs. 9(al) and 9(b1), show
the tracking performance and error, respectively, for a stable RC
system without any phase lead compensators, i.e., m;=m,=0. In
this case, increasing k, and/or the low-pass filter’s cutoff fre-
quency caused instability. Reducing the RC gain, however, re-
duced the convergence rate. The steady-state tracking error was
minimally affected by the RC gain and the phase lead through m,.

The scan rate can be improved by increasing the =90 deg
crossover frequency by adding phase lead through the parameter
m,. The inset in Fig. 8 shows the =90 deg crossover frequency
versus the phase lead parameter m,.

With the addition of phase lead, such as m,=7, the =90 deg
crossover frequency was increased to approximately 2000 Hz.
Therefore, the low-pass filter’s cutoff frequency can be improved
to raise the RC’s bandwidth permitting tracking of higher fre-
quency components. Subsequently, the RC gain Eq. (9) can be
increased. For example with m,=7, k,=1.1, and simulation re-
sults are shown in Figs. 9(a2) and 9(b2) that demonstrate im-
provement in the convergence rate and reduced tracking error
compared with the previous case without phase lead 7. As indi-
cated in the inset plot in Fig. 8, the higher values of m, show no
improvement in the crossover frequency.

Simulations where done with k,.=0.4 to verify the stability of
the closed-loop system with RC for different low-pass filter cutoff
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Table 2 Tracking results for +25 um range

5 Hz 10 Hz 25 Hz
emﬂX erms emﬂX erms emzlx erms
Controller (%) (%) (%) (%) (%) (%)
PID 2.01 1.28 3.99 2.61 9.16 6.61
RC 0.96 0.21 2.74 0.79 8.86 3.69
RC+phase leads 0.43 0.08 0.46 0.10 1.78 0.57

frequencies and values of m,. The results are summarized in Table
1. Comparing the inset plot in Fig. 8 and the summary in Table 1,
with m,=0 the closed-loop RC system is stable when the low-pass
filter frequency is below the crossover frequency of 486 Hz. As
the cutoff frequency increases, for example at 500 Hz and above,
the RC system is unstable. But the stability can be achieved by
adding phase lead through m, as shown by the results in Table 1.

Finally, by adding phase lead using z™! in the RC loop, for
example m;=6, the maximum tracking error, defined as

max|y — 7|
max(y) — min(y)
where y and r are the measured and reference outputs, respec-
tively, was substantially reduced from 11.96% and 5.32% (Figs.
9(a2) and 9(b2)) to 0.97% of the total range (50 wm) as illus-
trated in Figs. 9(a3) and 9(b3). The phase lead in the RC loop
increases the magnitude of the gain of the RC at the scanning
signal’s harmonics, hence reducing the size of W(e/*) (Eq. (13)).

The optimum value of the phase lead m; was determined by
looking at the maximum error versus m;. The simulation results
are shown in Fig. 10, plotted as normalized maximum error versus
my, along with experimental results which will be discussed in the
following section. As shown in the figure, the optimum value is

my=6 and this value was also used in the experiments discussed
below.

emx(%)=[ ] X 100% (16)

4.5 Experimental Implementation. Two repetitive control-
lers were designed, implemented, and their responses are com-
pared to PID control. The first is a standard RC with a low-pass
filter Q(z) in the RC loop. The standard RC did not include phase
lead compensators. The second RC contains the two phase lead
compensators z"! and 72 to improve the tracking performance
and stability, respectively.

In the experiment, the reference signal was a =25 um triangle
wave at 5 Hz, 10 Hz, and 25 Hz. The reference trajectory was
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Fig. 13 Tracking results for offset triangle scan at 25 Hz
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passed through a two-pole zero-phase-shift filter with a cutoff
frequency of 250 Hz to remove high-frequency components be-
fore applying it to the closed-loop system. Triangle scan signals
are typically used for AFM imaging and they were filtered to
avoid exciting high-frequency dynamics. The cutoff frequency for
the low-pass filter Q(z) in the RC loop was set at 250 Hz. Due to
hardware limitations where the sampling frequency was 10 kHz,
my=0 was chosen to give a maximum scan frequency of 25 Hz.
The RC gain was chosen as k,.=0.40 and this value satisfied the
condition given by Eq. (9).

Let N be an integer value representing the delay period, the
ratio of signal period T, to the sampling period 7. Figure 11(a)
shows the equivalent discrete-time block diagram for the RC loop,
where z7V is a delay of period N. The two phase lead compensa-
tors, ! and 7”2, have leads of m;=6 and m,=0. Both the delay
and phase leads were implemented using a linear data vector d as
shown in Fig. 11(b) with 2N elements. Two counters i and j were
used, one controlled the location where incoming data was stored
to the data vector and the other controlled the location where data
was read and sent. The difference in the indices i and j determines
the overall delay —N+m+m,, and since N>m+m,, the delay
implementation was causal. The flow diagram for the RC imple-
mentation with respect to the linear data vector d is shown in Fig.
11(c). Upon reaching the end of the array at i=0 and j=0, both
indices were reset to 2N—1 and the process was repeated.

5 Experimental Results and Discussion

The tracking results for the PID, regular RC, and the RC with
the phase lead compensators for =25 um scanning at 5 Hz, 10
Hz, and 25 Hz are presented in Fig. 12 and Table 2. The steady-
state tracking errors, measured at the last two cycles, are reported
as a percentage of the range of motion. In particular, the maxi-
mum error Eq. (16) and the root-mean-squared error defined as

1 T
\/ = fo (1) = r(0) Pt

max(y) — min(y)

ems(%) = X 100% (17)
are reported.

Because the action of the repetitive controller is delayed by one
scan period, the tracking response for the first period are similar
for the PID, RC, and RC with phase lead compensation as shown
in Fig. 12. However, after the first period the RC begins to take
action as illustrated by the reduction in the tracking error from one
cycle to the next. On the other hand, the tracking error of the PID
controller persists from one cycle to the next.

The 5 Hz scanning results shown in Figs. 12(al) and 12(bl),
and Table 2 demonstrate that the regular RC controller reduced
the maximum tracking error from 2.01% to 0.96% compared to
the PID controller, a 52% reduction. By using RC with the phase
lead compensation, an additional 55% improvement in tracking
performance was achieved. In this case, the maximum tracking
error is 0.43%.

At 25 Hz, the tracking error of PID was unacceptably large at
9.16%. In fact, for AFM scanning operations the maximum track-
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Fig. 14 Atomic force microscope images using measured tracking response along the x-axis
at 25 Hz and 25 um range. Steady-state tracking error shown below each image. PID control
(a1) first pass and (b1) second pass; standard RC (a2) first pass and (b2) second pass; and RC
with phase lead compensators (m;=6 and m,=0) (a3) first pass and (b3) second pass. The

x-axis is the fast-scanning motion and tip starts at the top and slowly scans down along the
y-axis.

ing error should be less than a few percent. The results in Table 2  phase lead compensation gives lower maximum tracking error at
show that the regular plug-in RC controller was not able to im-  1.78%. Therefore, the RC with phase lead compensation enables
prove the tracking performance at 25 Hz. However, the RC with  precision tracking at higher scan rates. The optimum value of the
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phase lead via m; was chosen using the simulation results in Fig.
10. The simulation results were validated in the experiments as
shown in the figure, where m;=6 gives the lowest steady-state
tracking error.

Next, scanning offset from the piezoactuator’s center position is
demonstrated as shown in Fig. 13. For this offset scanning opera-
tion, the PID controller accounted for the low frequency dynamics
such as creep and the RC was used for tracking the periodic tra-
jectory. The tracking results in Fig. 13 show that the RC was
effective at minimizing the tracking error.

5.1 Effects on AFM Imaging. To study the effects of RC on
AFM imaging, the measured tracking response of the PID and the
two repetitive controllers were used to obtain simulated images of
a calibration sample. The number of cycles was set to 200 to
produce 200 X 200 pixels image. The data for the vertical profile
of the calibration sample were first obtained with the AFM under
PID feedback control at a 1 Hz scan rate (512X 512 pixels). The
imaging mode used was constant-height, contact mode with a
relatively low force set-point. Using the measured x-axis tracking
response from the controllers, simulated AFM images were ob-
tained and for this study, they were preferred over obtaining the
images experimentally to minimize artifacts in the images caused
by coupling effects. A reference 512X 512 pixels image mea-
sured at 1 Hz was used to simulate the image from the PID, RC,
and RC with phase lead. The image simulation was done using
MATLAB’s 2D interpolation function interp2. The measured track-
ing response along the x-axis for PID and the two RC’s were used
by the interpolation function to obtain the vertical profile of the
calibration sample.

The resulting images using the measured reference image and
the measured tracking performance are shown in Fig. 12 for scan-
ning at 25 Hz. In particular, the left-hand column shows images
for the first pass and on the right-hand column are images from
the second pass. For the images on the left-hand column, the top
of each image shows distortion caused by transients where the
starting point was x=0. After a few cycles, the images from the
PID controller begin to reach steady state (Fig. 12(al)), but the
features continue to appear distorted. Specifically, the size and
shape of the dark areas are more elongated at the turn-around on
the left-hand side of the image compared to the right-side of the
image. As expected, the PID image on the second pass remains
unchanged because the tracking error with PID repeats from one
cycle to the next.

With standard RC (without phase lead compensation), the im-
ages are noticeably distorted as shown in Figs. 14(a2) and 14(b2).
Although the root-mean-squared error for standard RC is nearly
half of the PID controller (see Table 2), the large maximum error
shows that distortion in the AFM image is still significant. On the
other hand, the improved RC with phase lead compensation pro-
duces images with no noticeable distortion. On the first pass, the
top of the image in Fig. 14(a3) shows initial distortion, but after a
few cycles the image quality improves and remains the same for
the second pass as illustrated in Fig. 14(b3). These results indicate
that RC with phase lead compensation can be used to achieve
precise tracking in AFM for low-distortion imaging.

6 Conclusions

The design and implementation of a repetitive controller with
phase lead compensation for AFM were presented. The RC was
combined with a PID feedback system for precision tracking of
periodic trajectories. It was shown that one phase lead compensa-
tor affected the stability and robustness of the RC closed-loop
system; and the other affected the steady-state tracking precision.
Experimental results showed that at 25 Hz scan rate, the maxi-
mum error was less than 2% using the improved RC technique,
where as PID control resulted in 9.16% tracking error. The AFM
images based on the measured tracking results at 25 Hz scan rate
showed that RC can be used to obtain low-distortion AFM im-
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ages. Unlike PID control, which produces distorted images from
one frame to the next, the RC produced AFM images with negli-
gible distortion after the first frame.
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