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Abstract: We consider the application of iterative learning control (ILC) in which the input
update law exploits an inverse model of the hysteresis behavior for piezoactuators. Compared
to ILC for hysteresis that updates the control input using the measured tracking error scaled
by a constant (fixed) learning gain, the proposed ILC algorithm converges more rapidly. The
approach is analyzed and experimental results are presented to demonstrate the method’s ability
for precision output tracking.

1. INTRODUCTION

The atomic force microscope (AFM), a type of scan-
ning probe microscope (SPM), can observe, manipulate,
and fabricate intricate features well below the nanometer
range. The AFM is an important tool in nanotechnology
(Wiesendanger [1994]), where it is used to position atoms,
image the structure of biological specimens such as DNA,
fabricate novel nanoscale structures like quantum dots,
and measure the elastic properties of organic and inorganic
materials.

One critical component of AFM, and SPM’s in general, is
the piezoactuator. The piezoactuator is used to position
the AFM probe tip relative to a sample’s surface (Binnig
[1992]). Although the piezoactuator is capable of high
resolution positioning, it exhibits hysteresis and dynamic
effects (Croft et al. [2001]). These effects cause significant
positioning errors (Barrett and Quate [1991]), and the
errors then lead to distortion of AFM images, as well
as poor tolerances in the shape, size, and distribution of
features made with AFM-based techniques (Snow et al.
[1997]). Therefore, precise positioning of the piezoactuator
in SPM’s is needed, for example, to create well-defined
patterns of nanofeatures such as quantum dots (Taylor
et al. [2005]).

Feedforward and feedback controllers can minimize hys-
teresis in piezoactuators. For example, the Preisach model
has been exploited for feedforward compensation of the
hysteresis effect (Ge and Jouaneh [1995], Croft et al.
[2001], Song et al. [2005]). Likewise, feedback control can
reduce the hysteresis-caused positioning error in piezo-
based systems (Barrett and Quate [1991], Salapaka et al.
[2002]). One major drawback of model-based feedforward
control is lack of robustness. As the system ages, it changes
and can be affected by temperature variations; therefore,
modeling errors can degrade the performance of model-
based feedforward controllers. In feedback control, the sen-
sor noise, which enters through the feedback link, can limit
the performance (Gopal [2002]). Additionally, high feed-
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back gains may be difficult to achieve when the system’s
gain margin is low (Leang and Devasia [2007]). Integrated
feedback and feedforward controllers can compensate for
the lack of robustness, as well as the use of approximate
models for feedforward (Smith et al. [2000]). An alterna-
tive to feedforward and feedback control of hysteresis in
piezoactuators is charge control (Fleming and Moheimani
[2005]).

When AFM is used for imaging or nanofabrication, the
piezoactuator moves the probe tip over the sample sur-
face in a repetitive fashion. This repetitive process was
exploited to compensate for hysteresis. Iterative learning
control (ILC) is a method by which an input is found
through repetition to track a desired trajectory (Arimoto
et al. [1984], Moore et al. [1992]). ILC has been applied to
account for hysteresis effect in several hysteretic systems
(Hu et al. [2004], Iyer et al. [2005], Leang and Devasia
[2006]). One simple ILC algorithm proposed was based on
proportional feedback of the error signal at the current
iteration step (Iyer et al. [2005], Leang and Devasia [2006]).
In this case the iteration gain that scales the tracking
error at each iteration step was chosen as a sufficiently
small constant. Although the convergence was studied, the
constant gain is conservative. Therefore, the convergence
rate of such ILC design is slow. Practically speaking,
the drawback of slow convergence is having to wait for
many iterations before the tracking error diminishes to an
acceptable value.

Faster convergence of ILC can be achieved by exploiting
more information about the system. This concept was
analyzed and applied to an electrostrictive device where
the hysteresis behavior was assumed to be quadratic and
memoryless (Hu et al. [2004]). But unfortunately, the
hysteresis effect in systems such as piezoactuators (Ge and
Jouaneh [1995]) and shape memory alloys (Gorbet et al.
[1998]) depend on past input history, hence their input-
output behavior are multi-valued and history dependent
(Brokate and Sprekels [1996], Mayergoyz [1991]).

The contribution of this work is developing an ILC al-
gorithm which offers improved performance compared to
the standard proportional scheme. The proposed algorithm
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incorporates an inverse hysteresis model. In contrast to the
model-based approach proposed in (Hu et al. [2004]), the
proposed method exploits the Preisach hysteresis model
that captures the effect of past input history. The ILC
scheme can be integrated with existing feedback con-
trollers in AFM’s to provide robustness. We present the
details of the algorithm and then apply it to AFM fab-
rication. Experimental results are presented to demon-
strate enhanced performance. Section 2 reviews the ILC
approach for hysteresis. A modified algorithm is presented
in Section 3, followed by experimental results in Section 4.
Finally, concluding remarks are found in Section 5.

2. HYSTERESIS MODEL AND ILC

We let I � [t0, tf ] denote the finite time interval from
time t0 to tf . The set of all continuous nondecreasing
(respectively nonincreasing) functions on the interval I is
represented by C0

m+(I) (respectively C0
m−(I)).

2.1 The Preisach Hysteresis Model and Useful Properties

The focus here is hysteresis behavior, which is assumed to
be rate-independent, therefore we neglect dynamic effects.
ILC for combined hysteresis and dynamics is addressed
in (Wu and Zou [2007]). The Preisach hysteresis model
has been studied extensively to characterize the rate-
independent hysteresis in piezoelectric materials, e.g., see
(Ge and Jouaneh [1995]). In the Preisach model, output
v(t) of a hysteretic system is

v(t) = H[u](t) �
∫∫

α≥β

μ(α, β)Rα,β [u](t)dαdβ. (1)

In (1), μ(α, β) is the Preisach weighting function and the
point (α, β) belongs in the restricted Preisach plane P,
defined as

P � {(α, β)|α ≥ β;u ≤ α;β ≤ ū}. (2)

In practice, Eq. (2) implies that only relays enclosed in the
right-triangle region are affected by the input u.
Assumption 1. (Nonnegative μ) The Preisach weight-
ing function is piecewise continuous, nonnegative, and
bounded over the Preisach plane P, i.e., 0 ≤ μ(α, β) ≤ ∞,
∀(α, β) ∈ P.
Remark 1. Assumption 1 ensures that if the input u(t) is
increasing (resp. decreasing) in time, then its associated
output v(t) is also increasing (resp. decreasing) in time
(Visintin [1993]). Therefore, the rate of change in the
output with respect to the input is positive.
Definition 1. (Branch). Let L0 be an initial memory curve
and u ∈ C0

m+(I) (respectively, u ∈ C−
m−(I)), then we

say the pair (u,H[u]) belongs to the branch B↑[·, L0]
(respectively B↓[·, L0] ). A branch is monotonic in the
input u.
Property 1. (Bounds on the output difference). Let the
Preisach model Assumption 1 hold and L0 be an ini-
tial memory curve. Given u1, u2 ∈ C0

m+(I) (respectively,
u1, u2 ∈ C0

m−(I)) such that (u1,H[u1]), (u2,H[u2]) ∈
B↑[·, L0] (respectively, (u1,H[u1]), (u2,H[u2]) ∈ B↓[·, L0])
and if u1(t1) ≤ u2(t2) for any t1, t2 ∈ I, then

η1

(
u2(t2) − u1(t1)

)n ≤ H[u2](t2) −H[u1](t1) ≤
η2

(
u2(t2) − u1(t1)

)
, (3)

where n is a positive integer. The upper and lower bounds
in (3) can be found as described in (Leang and Devasia
[2006]).

2.2 Iterative Learning Control for Hysteresis Effect

Given a desired trajectory vd(t) for t ∈ I � [t0, tf ], the
objective of ILC is to iteratively find an input ud(t) such
that vd(t) = H[ud](t). Hysteresis compensation is achieved
using an iterative learning control algorithm (ILCA) of
the following form (Iyer et al. [2005], Leang and Devasia
[2006]):

uk+1(t) = uk(t) + ρ
(
vd(t) − vk(t)

)
, ∀t ∈ I, (4)

where k is the trial (iteration) number, uk+1(t) and uk(t)
are the next and current input at time t, vk(t) is the cur-
rent output value, and ρ is the iteration gain (a constant).
To ensure that ILCA (4) converges to the desired input
ud(·) as k → ∞, we require (Leang and Devasia [2006]):

C1) The initial condition at t0 must be the same for every
iteration step k. To achieve this, an appropriate input
is applied to reset the Preisach memory curve L(t)
such that at the initial time t0, the initial memory
curve L0 � L(t0) is the same for every step k;

C2) The desired trajectory is monotonic; and
C3) The iteration gain ρ must be sufficiently small.

0 < ρ ≤

⎧⎪⎪⎨
⎪⎪⎩

min
{

1
η2

,
2
η1

}
; if n = 1,

min
{

1
η2

,
2

η1(u − u)

}
; if n = 2.

(5)

The performance of ILCA (4) is governed by the bounds
on the output difference (3). The bounds determine the
iteration gain ρ.

3. HYSTERESIS INVERSE ILC

The ILC algorithm (4) leads to slow convergence because
the iteration gain ρ based on the bounds on the output
difference (3) is conservative (Tchoupo and Leang [2007]).
The inverse hysteresis model was utilized to improve
performance.
Assumption 2. (Invertibility) On a branch (e.g., B↑[·, L0]),
the Preisach hysteresis model is invertible; that is, for a
given v(t) for t ∈ [t0, t] and some initial inverse memory
curve L−1

0 , u(·) = H−1[v](·). Furthermore, we assume
the difference in the output of the inverse model for any
t1, t2 ∈ I on a branch is

ξ1

(
v2(t2) − v1(t1)

)m ≤ H−1[v2](t2) −H−1[v1](t1)
≤ ξ2

(
v2(t2) − v1(t1)

)
, (6)

where m is a positive integer.

By Assumption 2, for a given output v(t) = H[u](t), we
have u(t) = H−1[v](t). Then an input-update law that
incorporates the inverse model H−1[·] can be written as

uk+1(t) = uk(t) + H−1[vd](t) −H−1[vk](t),
for t ∈ I.
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With a perfect model H[·], we can achieve convergence
in one step. In practice, however, the model will have an
uncertainty. Therefore, we introduce the constant α,

uk+1(t) = uk(t) + α
(
H−1[vd](t) −H−1[vk](t)

)
. (7)

The constant α must be chosen to ensure that the inverse-
based ILCA (7) converges. In particular, we seek the
bounds on α such that the pair (vk(t), uk(t)), for t ∈ I,
belongs on a single hysteresis branch for every k. In other
words, the ILCA must preserve the monotonicity of the
input from one iteration to the next (Leang and Devasia
[2006]).
Assumption 3. Given vk(t) ≤ vd(t) and let L−1

0 be the
memory curve associated with the inverse hysteresis model
H−1[·]. We assume that the error in computing the step
size from H−1 is

Δûk(t) = Δuk(t) + εu

(
Δvk(t)

)
, (8)

where Δvk(t) = vd(t)−vk(t) is the output error and Δuk(t)
denotes the actual step size (error in the input given a
perfect model). Additionally, we assume that the function
εu(·) is monotonic in the output difference Δvk and

εu

(
Δvk(t)

)
= 0 (9)

when Δvk(t) = 0 for any t ∈ I; also, there exists a constant
0 < M < ∞ such that

εu

(
Δvk(t)

) ≤ MΔvk(t). (10)

Proposition 1. Let Assumptions 1, 2, and 3 be satisfied.
If 0 < α ≤ ξ1/(ξ2 + M), then the ILCA (7) generates a
sequence of inputs such that uk(t) ≤ ud(t) for all t ∈ I,
and k ≥ 1. Hence, the step size generated by the ILCA (7)
does not overshoot the desired input ud for all k.

Proof: By ILCA (7), the step size for the kth iteration is
αΔûk = α

[
Δuk(t) + εu

(
Δvk(t)

)]
. (11)

The objective is to determine an α such that
α
[
Δuk(t) + εu

(
Δvk(t)

)] ≤ Δuk(t), (12)
which implies

α ≤ Δuk(t)
Δuk(t) + εu

(
Δvk(t)

) . (13)

With Assumption 3 and the bounds on the input difference
(6), we find that

ξ1Δvk(t)
ξ2Δvk(t) + MΔvk(t)

≤ Δuk(t)
Δuk(t) + MΔvk(t)

≤ Δuk(t)
Δuk(t) + εu

(
Δvk(t)

) . (14)

Hence, 0 < α ≤ ξ1/(ξ2 + M). �

The results of Proposition 1 ensures that the sequence of
inputs generated by the ILCA (7) remains monotonic in
time, and of the same sign in monotonicity as the desired
trajectory vd. As a result, (vk(t), uk(t)), for t ∈ I, belongs
on a single hysteresis branch.
Proposition 2. Let Assumptions 1, 2, and 3 be satisfied.
Let vd ∈ Cm+(I) [respectively u0 ∈ Cm−(I)] and pick
u0 ∈ Cm+(I) [respectively u0 ∈ Cm−(I)]. If 0 < α ≤
min{ξ1/(ξ2 + M), 2}, then the ILCA (7) converges, i.e.,
uk → ud as k → ∞.

Proof: From ILCA (7), we have the following:

uk+1(t) = uk(t) + αΔûk(t),
= uk(t) + αΔuk(t) + αεu

(
Δvk(t)

)
. (15)

Subtracting the above expression from ud(t) and applying
Assumption 3 and the output bound (3), we can bound
the input error as follows:

Δuk+1(t) ≤ Δuk(t) − αΔuk(t),
Δuk+1(t) ≤ (

1 − α
)
Δuk(t). (16)

Taking the norm of both sides, we find for convergence
that 0 < α < 2. Combining the results of Proposition 1,
the restriction on α is 0 < α ≤ min{ξ1/(ξ2 + M), 2}. �

4. APPLICATION IN AFM FABRICATION

4.1 The Experimental System

The experimental AFM system is the Molecular Imaging
(MI, now part of Agilent Technologies) PicoPlus model.
In this AFM, the cantilever (with tip) is attached to the
piezoactuator. The piezoactuator moves the cantilever and
prove tip relative to a fixed sample (see Fig. 1).

The system was customized to permit the application of
control signals in the three coordinate axes (x, y, and z)
to control the piezoactuator. The output of the inductive
sensors, which are used to measure the displacement of
the piezo, were accessible through a custom signal access
module. The gain of the inductive sensors are 3.59 μm/V
in the x-axis and 4.04 μm/V in the y-axis. The MI
software was used for imaging and to maintain constant
deflection of the cantilever by controlling the z-axis during
fabrication. An external computer and data acquisition
system running custom C code was used to apply control
signals and read the position sensor voltages.

We focus our attention in this study on hysteresis ef-
fect; therefore, the AFM was operated at low frequencies
to avoid exciting the high-order dynamics (Croft et al.
[2001]). The measured frequency response revealed dom-
inant resonances at 417 Hz and 400 Hz for the x and y
axis, respectively. Based on the frequency response, the
fabrication process was chosen less than 1 Hz.

4.2 The Fabrication Process

The AFM can be used to fabricate features for creat-
ing novel nano-scale electronics and structures (Wendel
et al. [1994]) as well as sensors (Davis et al. [2000]). The
fabrication techniques include voltage-induced oxidation
(Campbell and Snow [1996]), dip-pen lithography (Piner
et al. [1999]), or physically indenting and scratching the
surface (Kunze [2002]). Additionally, AFM can be used to
manipulate particles (Decossas et al. [2003]). We consid-
ered the process of scratching features on a soft sample
by physically embedding and “dragging” the AFM tip
over the sample’s surface. This approach is one of the
simplest fabrication techniques, and the resulting features
can be used to define a mask for lithography to create
quantum devices (Wendel et al. [1994]). We note that
precise tracking of the piezoactuator’s trajectory is needed
to create well-defined patterns of structures (Sohn and
Willett [1995], Ortner et al. [2003]).
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Fig. 1. The experimental AFM system: (a) A schematic
of the main components; and (b) A block diagram of
the system. A feedback controller (PicoPlus software)
establishes constant deflection of the cantilever. The
external computer running custom C code is used for
implementing the ILC algorithm and it was also used
to measure the sensor voltages in the x and y axes.

A circular feature in the x/y plane shown in Figs. 2
(a) and (b) was fabricated with the AFM. A relatively
soft, polycarbonate surface was chosen as the medium
for scratching. The polycarbonate sample has an elastic
modulus of 2400 MPa. The fabrication process begins by
first lowering the AFM tip (with spring constant 40 N/m)
onto the sample surface, and once in contact with the
sample, a relatively low force set point (approx. 0.5 μN)
was used to image the sample. The imaging was performed
under closed-loop PI control (ki = 1.2, kp = 1.0) using
the MI software. Closed-loop imaging was done to obtain
an accurate image of the surface, especially before and
after application of ILC for comparison. After imaging, the
piezoactuator was brought to the home position (x = y =
0) and the force set point was increased to approximately
7.5 μN for scratching. (We note that the value agrees
with the work of other researchers, e.g., see (Yan et al.
[2007]). With the tip fully engaged, control voltages were
then applied to the x and y axes of the piezoactuator
from an external computer running custom C code. Once
fabrication was complete, the force set point was reduced
to 0.5 μN for imaging (in closed-loop) the sample.
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Fig. 2. The desired trajectory in (a) the x and y axes
and (b) a top view of the desired circular fabrication
trajectory.
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Fig. 3. Preisach weighting function for the piezoactuator
in the x axis.

4.3 Application of ILC
In this section, we apply the ILC approach, comparing
both the fixed learning gain method to the proposed
inverse-based algorithm.

ILC can be used before engaging, then applied and even
combined with feedback for added robustness to model
uncertainty.

To determine an appropriate iteration gain for conver-
gence, the hysteresis behavior was modeled using the
Preisach approach. The model was obtained from input-
output data using a least-squares method, and the ap-
proach is described in (Galinaitis and Rogers [1998]). Fig-
ure 3 shows the obtained Preisach weighting function u(·, ·)
for the x axis. The y-axis model was similar. The maximum
absolute and root-mean-square error between the model
output and the measured output were 1.11% and 0.019%,
respectively. Based on the model, an estimate of the iter-
ation gain ρ for the fixed gain ILC was 0 < ρ ≤ 0.062. In
the experiments, we chose the value ρ = 0.05 which falls
within the acceptable range.

An inverse hysteresis model was also identified using the
method described in (Croft et al. [2001]) for the inverse-
based ILC. The inverse model was used to compute the
gain α for the ILC feedforward input Eq. (7). A more
simplified inverse model can be considered, for example,
polynomial-based models can be used provided that the
model captures the effect of input history.

Without ILC compensation, the effect of hysteresis in
the piezoactuator causes significant tracking error and
distortion during fabrication. Figure 4, plots (a) and
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Fig. 4. The measured performance without ILC compen-
sation: (a) The x and y trajectories versus time, (b)
a top view of fabrication trajectory, and (c) an AFM
image of the fabricated feature.

(b), and AFM image (c) show the effects of hysteresis,
where the maximum tracking error in the x and y axes
are, 13.48% and 14.5%, respectively. The polycarbonate
substrate used was not flat and defects are evident.

To illustrate the ILC approach, we apply the method to
the x-axis — the y-axis results are similar and omitted
for brevity. The desired trajectory xd of interest is shown
in Fig. 2(a), and the time interval is I = [0.2, 1.45] s.
The desired trajectory is monotonic over the chosen time
interval. For general trajectories, the ILCA is applied
by partitioning the trajectory into multiple monotonic
sections and moving from one section to the next. The
details of this algorithm is described in (Leang and Devasia
[2006]). In all the experiments, the system was reinitialized
at the start of the desired trajectory, i.e., t0 = 0.2 s.

First, the constant iteration gain ILC, Eq. (4), was applied
and after 120 iterations, the magnitude of the maximum
tracking error is 0.5% (with respect to 10 μm range).
The initial input u0 was chosen as the desired trajectory
scaled by a constant value. The tracking results at different
iteration steps are shown in Fig. 5(a), along with the
maximum error versus iteration step k shown in Fig. 5(b).

The inverse-based ILCA (7) was applied using the same
desired trajectory xd. The value of α was 0.05, 0.1, and
0.5. By incorporating the inverse, the proposed ILCA
converges more rapidly. The tracking results at different
iteration steps are shown in Fig. 5(a), along with the
maximum error versus iteration step k shown in Fig. 5(b).
The error versus k plot compares the results for the
constant iteration gain to the inverse-based ILCA. With
an α = 0.5, after 11 iterations the maximum error of
the inverse-based ILCA converges to 0.5%(see Fig. 6).
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Fig. 5. Experimental results of ILC with constant iteration
gain (ρ = 0.05): (a) The output for several trials;
(b) The magnitude of maximum tracking error versus
iteration number, k.
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Fig. 6. Experimental results of inverse-hysteresis ILC: (a)
The output for several trials (α = 0.5); (b) The
magnitude of maximum tracking error vs. iteration
number, k, for the constant-gain ILC (ρ = 0.05) and
inverse-hysteresis ILC (α = 0.5, 0.1, 0.05). (c) AFM
image of fabricated feature.

The improvement in the rate of convergence is ten-fold
compared to the constant iteration gain approach. Figure
6(c) shows the fabrication results using the inverse-based
ILCA, and the desired circular feature is achieved.

5. CONCLUSIONS

In this paper, we used the ILC method to compensate
for hysteresis effect in piezoactuators. The ILC algorithm
incorporated an approximate inverse hysteresis model. By
using the model, a better estimate of the required step size
for convergence was achieved. Compared to standard ILC
where the update law is proportional to the tracking error,
the model-based ILC yields improved rate of convergence.
The ILC method was applied to fabricate a micro-sized
feature using an experimental AFM and results were
presented to demonstrate the effectiveness of the approach.
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