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Abstract—This paper presents a stochastic approach for
automatic collision avoidance for tele-operated unmanned aerial
vehicles (UAVs). Collision detection and mitigation in the
presence of uncertainty is an important problem to address
because on-board sensing and state estimation uncertainties are
inherent in real-world systems. A feedforward-based algorithm
is described that continually extrapolates the future trajectory of
the vehicle given the current operator control input for collision
avoidance. If the predicted probability of a collision is greater
than a user-defined confidence bound, the algorithm overrides
the operator control input with the nearest, safe command
signal to steer the robot away from obstacles, while maintaining
user intent. The algorithm is implemented on a simulated
quadrotor helicopter (quadcopter) with varying amounts of
artificial uncertainty. Simulation results show that for a given
confidence bound, the aerial robot is able to avoid collisions,
even in a situation where the operator is deliberately attempting
to crash the vehicle.

I. INTRODUCTION

The number of civil and commercial applications for
unmanned aerial vehicles (UAVs) has risen tremendously
over the past few decades. The applications include environ-
mental control and monitoring [1], 3D mapping [2], telecom-
munication [3], crop and aquaculture farm monitoring [4],
unexploded ordnance detection [5], traffic monitoring [6],
and media resources [7]. Since many small to medium sized
multi-rotor UAVs have the ability to access hard to reach in-
door and outdoor locations or areas that are unfit for humans,
they can be used for search and rescue, law enforcement,
or first responders to enhance situational awareness [8], [9].
However, one of the most daunting tasks for even a skilled
UAV pilot is collision avoidance, especially in tight and
compact environments such as inside of a partially collapsed
building where usually the only feedback is a live-camera
feed. Thus, automatic collision avoidance technology for tele-
operated UAVs is critical and necessary to allow pilots to
focus on higher-priority tasks such as locating survivors.

In this paper, a feedforward-based collision avoidance
algorithm that considers sensing and estimation uncertainties
while maintaining the user’s intent is presented [see block
diagram in Fig. 1(b)]. Specifically, a collision is avoided
by exploiting the dynamics of the robot and the measured
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Fig. 1. Collision avoidance for tele-operated UAVs: (a) concept where UAV
pilot controls the aircraft and provides a user input u. When a collision is
detected, with on-board sensing and state estimation, the algorithm produces
an input ∆u that augments the pilot’s input u to steer the robot away from
the obstacle. (b) Control block diagram and (c) the collision avoidance block
where the pilot’s input u is passed through the dynamics model to obtain
the estimated trajectory p̂ along with uncertainty in the motion model m.
This trajectory is checked for collisions against the obstacles O including
uncertainty w. If a collision is detected, the algorithm calculates a change
in input ∆u to avoid collisions. If the input u+∆u is deemed safe, it is
then passed to the robot.

relative distances between objects in the environment for
automatically determining control inputs to safely steer the
UAV away from obstacles [10]. To enable the use of UAVs in
real-world applications, UAVs will need to be equipped with
on-board sensors to measure and/or estimate the distance to
nearby obstacles and maintain an internal estimate of their
state [11]. However, when on-board sensing technology, such
as light detection and ranging (LIDAR), is used the uncer-
tainty in the sensor’s output can significantly affect the per-
formance of the collision avoidance algorithm. For example,
the popular Hokuyo RG-04LX-UG01 LIDAR range sensor
most commonly used in robotics for obstacle avoidance has
an accuracy up to ±3% of the measurement. Measurement
error combined with uncertainty in state estimation (due to
the fact that a model of the robot’s dynamics are used)
can lead to collisions. Because sensing and state estimation
uncertainties are inherent in real-world applications, it is
necessary to consider these uncertainties when developing
collision avoidance algorithms.

The contribution of this work is a feedforward-based colli-
sion avoidance algorithm that explicitly considers uncertainty
in the location of the obstacles and uncertainty in the robot
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model [see collision avoidance block in Fig. 1(c)]. In particu-
lar, the proposed method estimates the trajectory of the robot
from the current time into the future for some predetermined
amount of time given the robot’s dynamics and the control
input (from the operator). This trajectory is checked for any
collisions with the obstacles in the environment given the
uncertainty in the estimated trajectory and the uncertainty in
the obstacle location, where an on-board LIDAR sensor could
be used for obstacle detection. If the probability of a collision
is found to be above some confidence bound, the algorithm
determines a new control input that is as close as possible to
the operator’s original input while avoiding collisions through
a convex optimization. The minimal change in the input
allows the method to maintain the user’s intent as much as
possible while avoiding collisions.

The feedforward-based algorithm is implemented on a
simulated quadrotor helicopter in a variety of environments
with different magnitudes of artificial uncertainty added to
the obstacle detection and trajectory estimation. It is demon-
strated in simulation that the algorithm provides collision-free
motion probabilistically given the confidence bound selected.

The remainder of this paper is structured as follows.
Related work and comparisons of the proposed work with
similar techniques are discussed in Sec. II. The problem
is defined in Sec. III, followed by a detailed presentation
of the stochastic collision avoidance algorithm in Sec. IV.
Simulation details, results, and discussion are presented in
Sec. V. Finally, concluding remarks and future work are
presented in Sec. VI.

II. RELATED WORK

Collision avoidance is an important research topic in
robotics, where numerous approaches have been developed
and applied to manufacturing systems [12], medical de-
vices [13], and mobile service robots [14]. Some early
methods include potential fields [15], [16], the dynamic
window approach [17], velocity obstacles [18], and vector
field histograms (VFH) [14].

In general, collision avoidance methods can be classified
into one of two main categories: global and local (reac-
tive methods). First, collisions between a mobile robot and
obstacles can be achieved through a motion planning algo-
rithm [19]–[23] which typically assumes a priori information
about the environment. These methods search the robot’s
possible trajectories for the best trajectory with respect to
some goal, typically choosing a trajectory that minimize
the uncertainty. These methods share the similarity that
they select a trajectory and define the control inputs to
control the robot optimally along the selected trajectory.
Often, global planners are computationally expensive and
information about the environment is required.

A second class of collision avoidance algorithms are local
or reactive methods. These methods do not optimize a trajec-
tory, but rather they find a change in control input that will ap-
proximately avoid collisions given a local knowledge (sensor

information) of the obstacles. In many of the reactive algo-
rithms uncertainty is often handled by improving sensory per-
ception [24], [25] or using relative sensing information and
developing control laws that guarantee separation between
agents (and obstacles) in the presence of uncertainty [26].
Additionally, algorithms also approximate the noise by artifi-
cially increasing the size of the robot empirically based on the
uncertainty [27]. Other techniques deal with state uncertainty
by exploiting dynamic programming [28].

Integrated global and local planners have been explored,
where proposed algorithms use a predicted trajectory to avoid
collisions with the observable, local obstacle [18]. Typically,
these algorithms avoid collisions by computing a given
change in input for a current sensing-action cycle, but limited
work has explicitly considered uncertainty and those that do
typically add a buffer or safety zone around the robot [24]–
[27] . The approach in this paper also exploits both global and
local information, but considers explicitly the uncertainty in
the estimation and measurement process. By using a feedfor-
ward prediction of the flight path and computing the expected
robot position along the trajectory, the proposed method
can perform a less approximate consideration of noise than
increasing the radius of the robot arbitrarily as in reactive
planners, but less exact than a full trajectory optimization
of the global planners. This results in an approximate, but
reliable and robust method that can operate in real-time to
assist UAV pilots with collision avoidance.

III. PROBLEM FORMULATION

A. Notation

In the following, vector sets are denoted using calligraph-
ics, for example A. Vectors are represented by boldface
fonts, such as a; matrices are denoted by upper case italics,
for example A; and scalars are represented by lower-case
italics, such as a. Scalar and matrix multiplications, and
Minkowski sums of sets are defined as aB = {ab | b ∈ B},
AB = {Ab | b ∈ B}, A⊕ B = {a+ b | a ∈ A,b ∈ B}.

A vector a sampled from a multivariate normal distri-
bution with mean µ and variance Σ, where Σ is positive-
semidefinite, is denoted by a ∼ N (µ,Σ).

B. System equations, uncertainty, workspace, and obstacles

Consider a robot with general, nonlinear equations of
motion and a state space of arbitrary dimension m. Let
X ⊂ Rm be the state space of the robot and let U ⊂ Rn be
the control input space of the robot. Let the continuous-time
equations of motion of the robot be defined by the function
f ∈ X × U → Rm,

ẋ(t) = f(x(t),u(t)) +m, m ∼ N (0,M), (1)

where x(t) ∈ X and u(t) ∈ U are the state and control input
at time t, respectively. It is assumed that the motion of the
robot is corrupted by zero-mean Gaussian noise m ∈ Rm

with a given covariance M ∈ Rm×m, where M is positive
semi-definite.
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For a given input u, the predicted state x̂(t) follows

˙̂x(t) = f(x̂,u, t). (2)

Given an initial state x = x(0), x̂ = x̂(0), and a constant
input u, the state of the robot for t > 0 is defined by

x(t) ∼ N (x̂(t), P (t)), (3)

where x̂(t) = g(x̂,u, t) is the expected state at time t, g ∈
X × U × R → X represents the solution to f in Eq. (1)).
P (t) is the uncertainty of the state, defined as

P (t) = E
[
(x(t)− x̂(t))(x(t)− x̂(t))T

]
. (4)

The uncertainty at time t, Eq. (4), is found by solving the
following differential equation:

Ṗ (t) = A(t)P (t) + P (t)A(t)T +M, (5)

where

A(t) =
∂f

∂x̂
(x̂(t),u(t)). (6)

Let Rd be the workspace in which the robot maneuvers,
where typically d ≤ 3, and let O ⊂ Rd define the subset of
the workspace occupied by obstacles. In order to maintain
compatibility with the implementation of on-board sensing,
those regions of the workspace that are occluded by the
obstacles as seen from the current state of the robot are
also considered obstacles. In other words, the subspace of
the workspace that cannot be seen by the robot is also an
obstacle. The obstacles’ positions can be defined relative
to the robot’s position including uncertainty with known
variance Z ∈ Rd×d

O =
n∪

i=1

Oi ⊕ {w}, w ∼ N (0, Z), (7)

where Oi represents individual objects in the environment
that are considered obstacles and w is drawn from a zero-
mean normal distribution with variance Z. The relative
obstacle paradigm provides the benefit of eliminating the
need for the robot to maintain an estimate of its position
over time.

Let R(x) ⊂ Rd denote the subset of the workspace
occupied by the robot when it is in state x ∈ X . Then, a
colliding state is defined as

R(x(t)) ∩ O ≠ ∅. (8)

C. Problem Definition

The problem is defined as finding a minimal change
∆u ∈ U to the control input u ∈ U given the initial state
x ∈ X of the robot to avoid collisions with obstacles within
a time horizon τ . The probability that the robot will collide
with an obstacle given the variance in the state estimate and
obstacle location must be less than a predetermined value p̄
for all time less than the time horizon τ ∈ R, hence

minimize: ∆uTR∆u (9)
subject to: p (∀t ∈ [0, τ ] :: R(x(t)) ∩ O = ∅ | P (t), Z) ≤ p̄,

where R ∈ Rn×n is a positive-definite weight matrix, P (t)
is the variance in the forward prediction of the state, and Z
is the variance in the obstacle location.

IV. A STOCHASTIC APPROACH TO COLLISION
AVOIDANCE

A. Approach

In the following, a feedforward approach is presented for
collision avoidance [see block diagram in Fig. 1(b)]. First, the
following assumptions are made to simply the nonlinear, non-
convex optimization problem for real-time implementation.

Assumption 1. The robot’s position p ∈ Rd can be derived
from the state through a projection

p(t) = Cx(t), (10)

where C ∈ Rd×m.

Assumption 2. The geometry of the robot R is defined as the
smallest enclosing sphere centered at its reference point such
that the geometry is rotationally invariant. Let R(p) ⊂ Rd

be the spherical subset of the workspace occupied by the
robot at position p.

Assumption 3. The robot’s trajectory can be represented
through a first-order Taylor expansion, i.e.,

p̂(t,∆u) ≈ p̂⋆(t) + J(t)∆u, (11)

where

p̂⋆(t) = Cg(x̂,u, t), J(t) = C
∂g

∂u
(x̂,u, t). (12)

Assumption 4. If the robot is collision-free at time τ with
respect to an appropriately chosen convex subset of the free
workspace, then it is assumed that the robot is also collision-
free for all time t ∈ [0, τ ]. This is reasonable for relatively
short time horizons τ .

Given the robot’s current state x and the current control
input u (from the operator), the estimated positions of the
robot in the future are found by Eq. (11). The variance on
the predicted state was given in Eq. (4).

From Assumption 1, the mapping from the robot’s state to
its position also defines the variance on the robot’s position,
i.e.,

Pc(t) = CP (t)CT . (13)

From Assumption 4, when there is uncertainty in both
the obstacle location and the robot’s estimated trajectory, a
probability for a collision must be considered rather than
a deterministic collision or collision-free state. Thus, given
independent Gaussian distributions representing the uncer-
tainty in the trajectory estimation and the obstacle location,
respectively, the probability for a collision is non-zero if

N (p̂⋆(τ), Pc(τ) + Z) ∩ O ≠ ∅. (14)

The robot is considered to be collision-free (probabilistically)
if for all time t ∈ [0, τ ] the probability for a collision to occur
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Fig. 2. Shown is a scenario where a quadrotor helicopter has uncertainty
in both its trajectory estimation and the obstacle location. The a priori
variance Pc(τ) + Z for a given obstacle normal n is represented as
nT (Pc(τ) + Z)n. The collision point pc is defined as the point along
the trajectory where this transformed variance is some distance from the
obstacle based on the selected confidence bound p̄. The halfspace is defined
such that nT p̂(τ,∆u) > c where c = nTpc.

is less than the confidence bound p̄ given the distributions of
the position estimate and obstacle locations, i.e.,

p((R(p(τ))∩O ̸= ∅) | (N (p̂⋆(τ), Pc(τ) +Z)∩O ̸= ∅))
≤ p̄. (15)

For a trajectory that is determined to be collision free, the
current operator’s input u is deemed safe and does not need
to be changed, hence ∆u = 0. Conversely, if the probability
for a collision is greater than the bound p̄ then the operator’s
input is unsafe and must be corrected in order for the robot
to obtain a collision-free trajectory, hence ∆u ̸= 0.

Let pc be defined as the first point along the trajectory that
has a probability of colliding with an obstacle greater than
the confidence bound, thus

pc = p̂⋆(tc), (16)

where

tc = argmin
t∈[0,τ ]

{

p((R(p(t)) ∩ O ̸= ∅) | (N (p̂⋆(τ), Pc(τ) + Z) ∩ O ̸= ∅))
> p̄}. (17)

The probabilities in Eqs. (15) and (17) can be difficult to
compute exactly. Approximating the solution is desirable to
make the algorithm tractable for real-time implementation.

Given a unit normal vector n of the obstacle O that points
into the free workspace, consider a halfspace with the same
normal n (pointing toward the free space) that provides a
convex approximation of the local free space. The halfspace
is located at the collision point pc, determined by Eq. (17).

Given the local approximation of the free space provided
by the halfplane, the uncertainty can be mapped into the
halfspace by transforming the multivariate distribution into a

one-dimensional (along the normal n) Gaussian distribution
centered at pc,

N (p̂⋆(τ), (Pc(τ) + Z)) ≈ N (p̂⋆(τ),nT (Pc(τ) + Z)n).
(18)

Using this approximate representation of the uncertainty,
the probability of avoiding collision can now be represented
very simply by the number of standard deviations for a
desired confidence bound.

Equation (15), given this approximate representation of the
uncertainty, is now redefined such that the robot is considered
to be collision-free for all time t ∈ [0, τ ] if

∀t ∈ [0, τ ] :: R(p̂⋆(t)) ∩ (O ⊕ {σ̂n}) = ∅, (19)

where σ̂ is the distance calculated from the standard deviation
and selected confidence bound p̄ where

σ̂ = anT
(√

Pc(τ) + Z
)
n, (20)

where a is a scaling factor that corresponds to a Chi-Squared
distribution for the given confidence bound p̄.

Equations (16) and (17) can now be approximated by the
following simplified expression:

pc = p̂⋆

(
argmin
t∈[0,τ ]

{R(p̂⋆(t)) ∩ (O ⊕ {σ̂n}) ̸= ∅}

)
, (21)

where if the system has no uncertainty σ̂ = 0, then Eqs. (19)
and (21) are equivalent to the deterministic solution in [10].

Next, given Eqs. (16) and (19), a linear constraint is
defined on the position p̂(τ,∆u) of the robot at time τ (see
Fig. 2)

nT p̂(τ,∆u) > nTpc. (22)

Substituting Eq. (11) from Assumption 3, the constraint
on the robot’s position in Eq. (22) can be transformed into a
constraint on its change in input ∆u

nTJ(τ)∆u > nT (pc − p̂⋆(τ)). (23)

Equation (9) is approximated using Eq. (23) as

minimize: ∆uTR∆u (24)

subject to: nTJ(τ)∆u > nT (pc − p̂⋆(τ)),

where solving this convex optimization, such as is done by
the RVO library in [29], provides a collision free change in
input ∆u with the control input given to the robot as u+∆u.

B. Handling Convex Edges and Corners Through Iteration

The use of an approximation of a convex region of the local
free space near the robot’s trajectory means that it cannot be
assumed that the newly selected control input u+∆u avoids
collisions with respect to all obstacles for all time t ∈ [0, τ ].
This is, in particular, true near convex edges or corners of
the workspace as shown in Fig. 3. However, the approach
can simply be repeated in an iterative fashion to solve this
problem.
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Fig. 3. The iterative process of the algorithm is shown. A trajectory is
estimated from the original operator’s input such that ∆u = 0 and is shown
as p̂(τ,0). The variance on this estimated position is shown as the gray
ellipsoid located at p̂(τ,0). Considering this uncertainty, a new input is
determined u+∆u1 to avoid the first detected collision. The trajectory for
the new input is predicted and is shown with its variance at p̂(τ,∆u1).
This also results in a collision and the algorithm computes a new change
in input ∆u2. The resulting trajectory p̂(τ,∆u2) is collision free and the
input u+∆u2 is passed to the robot.

Assume the algorithm has computed a change in control
input according to Eq. (9) and that it is the first iteration
of the algorithm. Continuing to iteration i, the control input
u +∆ui is used to extrapolate the trajectory and check for
a potential collision. If a collision is found to occur, a new
linear constraint is defined as

aTi ∆u > bi, (25)

where

aTi = nT
i Ji(τ), (26)

bi = nT
i (pc,i − p̂i(τ)). (27)

The convex optimization problem in Eq. (24) can now be
solved for all iterations i by the following:

minimize: ∆uTR∆u (28)

subject to:
∩i

j=1{aTj ∆u > bj}.

Every ith iteration of the algorithm introduces an addi-
tional constraint to the convex optimization problem. After
at most d iterations, the control input u+∆u, where ∆u is
the change in control input computed in the latest iteration,
is then applied to the robot. The number of iterations, and
therefore, the number of constraints is maximized at d,
where d is the dimension of the workspace. This upper limit
accounts for corners of the free space in d dimensions as
shown in Fig. 3. This iterative approach is performed during
every sensing-action cycle of the robot.

This iterative approach aligns with the LP-type algorithm
in [30]. The LP-algorithm solves low-dimensional convex
optimization problems in O(i) expected time by considering
the constraints in an iterative fashion, where i is the number
of constraints. The dimension of the optimization problem
in this paper equals the dimension n of the control input

∆u, which, typically, is equal to the dimension d of the
workspace. Maximizing the number of iterations to d ensures
the convex optimization problem remains feasible.

V. SIMULATION: RESULTS AND DISCUSSION

The proposed approach is implemented in simulation on
a quadrotor helicopter. Results and discussion are presented
below.

A. Implementation Details

All computations were performed on a desktop computer
with an Intel Core i7-4790K, 8GB RAM, and the 64-bit
Ubuntu 12.04 operating system. The algorithm was imple-
mented within the Robot Operating System (ROS) framework
[31]. The simulations used a control cycle frequency of
50 Hz. The VRep simulator from Coppelia Robotics [32]
was used to simulate the behavior of the quadcopter. The
quadcopter was controlled through the use of the V-Rep
ROS plugin that allows communication between a running
ROS node and the simulator. The V-Rep simulator sends the
position of the robot into ROS while the ROS node sends the
control input to be applied to the robot.

The obstacles in the environment are predefined for each
simulation scene and represented as oriented triangular facets.
These triangles model the true obstacles offset along their
normals by the radius r of the bounding sphere of the robot,
approximating the Minkowski difference of the robot and
the obstacles so the robot can be considered as a point. The
trajectory of the robot is estimated by integrating Eq. (1)
forward in time using a Runge-Kutta integration with 0.01s
time-steps. Each increment of the trajectory is considered a
straight-line segment that is checked for intersection with the
obstacle’s triangular facets. The matrices J(τ) and L(τ) were
approximated through numerical differentiation.

1) Quadcopter Dynamics: The simulations incorporated a
model of a quadrotor helicopter similar to work in [10]. The
model has a 12-dimensional state x = [pT ,vT , rT ,wT ]T ∈
X that consists of position p ∈ R3, velocity v ∈ R3,
orientation r ∈ R3 (rotation about r/∥r∥ by an angle ∥r∥),
and angular velocity w ∈ R3. The 3-dimensional control
input u = [uz, ur, up]

T ∈ U consists of the desired vertical
velocity uz , desired roll ur, and desired pitch up. Typically, a
quadcopter also has input for the yaw, but this is a redundant
degree-of-freedom that is held fixed at zero. The equations
of motion are given as

ṗ = v, (29)

v̇ = −kdragv + exp([r])[0, 0, kp1(uz − vz)]
T , (30)

ṙ = w, (31)

ẇ =

kp2(ur − rx)− kdwx

kp2(up − ry)− kdwy

−kp3wz

 , (32)

where [r] represents the skew-symmetric cross product matrix
of r. The terms kdrag = 0.2, kd = 0.1, kp1 = 1.0, kp2 =
10.0, kp3 = 0.1, and kp4 = 0.05 are coefficients and gains
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whose values were estimated to provide realistic motion. The
robot was simulated with an aggressive flight model that
allows for maximum roll and pitch angles of 0.35 rad (20
degrees).

2) Artificial Uncertainty: Artificial noise was included in
the simulations to represent the uncertainty in the trajectory
estimate and the obstacle locations. For the uncertainty in the
estimated trajectory, as the robot propagates its state forward
in time according to the dynamics, a sample was drawn from
a normal distribution of variance M and added according to
Eq. (1). For the uncertainty in the obstacle location, a random
sample was drawn from a normal distribution of variance
Z at the beginning of each sensing-action cycle. This value
was then added to the relative obstacle location that is newly
provided to the robot every sensing-action cycle.

The value to offset the halfplane based on the confidence
bound σ̂ was calculated by first taking taking the Cholesky
decomposition of the covariance matrix such that Σ =√
Σ
√
Σ

T
. The matrix

√
Σ was then projected onto the normal

and scaled as an
√
ΣnT where a represents the value from

the Chi-Squared distribution for a given confidence bound.
For the experiments discussed in the subsequent section, the
confidence bound was set to be p̄ = 0.5, or in other words
the robot has a probability of not colliding that is at least
95% and, therefore, a = 3.841.

B. Results and Discussion

Experiments were performed to investigate the relationship
between the confidence bound p̄ and the true probability
of avoiding collisions using the algorithm presented in this
paper. These experiments were performed by placing the
quadcopter directly next to a wall and providing the robot
with a constant control input in the direction of the wall, or
in other words opposite the wall’s normal n. This constant
input and initial position constantly provides a potential
collision. For this experiment, the motion covariance and
sensing covariance were defined as

M = diag([202I3, 102I3, 52I3, 2.52I3])10
−4, (33)

Z = 0.22I3, (34)

where diag(. . .) represents a block-diagonal matrix, I3 rep-
resents a 3 × 3 identity matrix. The experiment consisted
of 200, 000 time steps and the number of collisions was
recorded. The true probability of collision for the algorithm
was found to be 0.713% with an accurate estimate of the
covariance. This is significantly less probable to have a
collision than the 5% defined by p̄ due to the conservative
nature of the algorithm.

The covariance values can, in practice, be difficult to
properly estimate, particularly the covariance with respect to
the robot’s model. The sensitivity of the algorithm with re-
spect to erroneous values in covariance estimates was tested.
An experiment was performed where the true uncertainty
applied to the robot model and the obstacle location, M and
Z respectively, are underestimated by the algorithm when

TABLE I
ERROR CALCULATIONS AS FRACTION OF RADIUS

Smaller Covariance Larger Covariance
x y x y

Maximum Deviation 10.33 10.01 10.28 8.231
RMS-Average 4.811 5.317 4.634 4.240

Standard Deviation 4.813 3.602 4.621 2.507

computing a change in input [Eq. (20)] by 25% and 50%. At
a 25% underestimate of the covariance, the true probability
of collision only increased by 24.3% to a value of 0.886%.
For an underestimate of the covariance by 50%, the true
probability of collision increased by 176% to 1.97%. This
shows that the true probability of collision is sensitive to the
errors in covariance estimates, but due to the conservative
nature of the algorithm, it is still robust to errors in the
covariance estimates.

Next, three experiments were performed to evaluate the de-
viation from the nominal (deterministic) path in the stochastic
approach. In these experiments, the robot was controlled with
a constant input in the negative y-direction (see Fig. 4)
for a fixed amount of time. The first experiment ran the
deterministic version of the algorithm. The second and third
experiments ran the stochastic version of the algorithm as
developed in this paper. The second experiment used a
smaller covariance of

M = diag([52I3, 2.52I3, 1.252I3, 0.6252I3])10
−4, (35)

Z = 0.052I3, (36)

while the third experiment used a larger covariance of

M = diag([102I3, 52I3, 2.52I3, 1.252I3])10
−4, (37)

Z = 0.12I3. (38)

The entire trajectories were recorded during the experi-
ments and are shown in Fig. 4. The deviations of trajectories
for both covariance values were calculated and are presented
in Fig. 4. At every time-step, the deviation in the trajectory
was calculated in the x − y plane. The deviation in the
z direction is negligible because the algorithm does not
change the input with respect to the robot’s altitude due
to the obstacles being vertically aligned. In the x and y
directions, the maximum deviation over the entire trajectory
was calculated as well as the RMS-average value and the
standard deviation. The results of those calculations, nor-
malized by the robot’s radius, are given in Table I for both
covariance values. As can be seen, the algorithm can have
large deviations from the deterministic results in the presence
of uncertainty while still avoiding collisions. The maximum
deviations were observed to correlate with the robot taking a
more conservative trajectory around the ends of the obstacles
and the deviation grew over time as the deterministic case
results in a faster completion of this trajectory.

A simulation was performed where the quadcopter was
guided through a window-like opening in a large wall (see
Fig. 5). The goal position of the robot was set directly on
the other side of the window from the quadcopter’s initial
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Fig. 4. An experiment was performed to compare the path of the quadcopter through the environment for deterministic collision avoidance and stochastic
collision avoidance with two sets of variances [Eqs. (35)–(38)]. On the left, the resulting paths are given and a zoomed portion is given for clarity. On the
right, the deviations from the deterministic case are given for the two covariances.

position. The quadcopter strafes along the non-vertical wall
and then passes through the window when it reaches it and is
not avoiding collisions with the wall in front of it. This simu-
lation demonstrates the algorithms capabilities to perform 3-
d collision avoidance with non-vertical obstacles even when
using a simple 1-d approximation of the uncertainty.

Videos of the above experiments along with other scenarios
can be found at the University of Utah DARC Lab webpage1.

VI. CONCLUSIONS AND FUTURE WORK

A feedforward-based collision avoidance algorithm for
tele-operated unmanned aerial vehicles that explicitly con-
siders uncertainty was presented. Specifically, the method
estimates the trajectory of the robot from the current time into
the future for some predetermined amount of time given the
robot’s dynamics and the control input (from the operator).
This trajectory is checked for any collisions with the obsta-
cles in the environment given the uncertainty in the estimated
trajectory and the uncertainty in the obstacle location. Exper-
iments were performed on a simulated quadrotor helicopter
that showed the approach is capable of avoiding collisions
with a probability greater than a selected confidence bound.
The approach provides an input that is as close as possible
to the original operator’s input while avoiding collisions. The
minimal change in user input provides a method to control
the quadcopter that is intuitive and safe, allowing the operator
to focus on other tasks.

The approach was developed for general, nonlinear dy-
namics. Future work includes implementation on different
types of mobile robotic systems and on-line implementation
involving on-board range-finding sensors, such as LIDAR.
Additionally, authors plan to apply the technology to UAVs
for search and rescue, to enhance situational awareness for
first responders, and to enable autonomous environmental
monitoring in urban environments.

1http://www.kam.k.leang.com/academics/robotics/

Fig. 5. A 3-dimensional example is shown where the quadrotor is steered
towards a goal point through a window on a slanted wall. The window has
tight clearance with respect to the robot. The height of the window is only
25% larger than the robot’s diameter, however, the diameter is a conservative
estimate provided by the minimum-radius bounding sphere. The width of
the window is 75% larger than the robot’s diameter.
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