Auton Robot
DOI 10.1007/10514-017-9614-4

@ CrossMark

On-board model-based automatic collision avoidance: application
in remotely-piloted unmanned aerial vehicles

Daman Bareiss! - Joseph R. Bourne! - Kam K. Leang1®

Received: 2 May 2016 / Accepted: 11 January 2017
© Springer Science+Business Media New York 2017

Abstract This paper focuses on real-world implementation
and verification of a local, model-based stochastic auto-
matic collision avoidance algorithm, with application in
remotely-piloted (tele-operated) unmanned aerial vehicles
(UAVs). Automatic collision detection and avoidance for
tele-operated UAVs can reduce the workload of pilots to
allow them to focus on the task at hand, such as search-
ing for victims in a search and rescue scenario following
a natural disaster. The proposed algorithm takes the pilot’s
input and exploits the robot’s dynamics to predict the robot’s
trajectory for determining whether a collision will occur.
Using on-board sensors for obstacle detection, if a collision
is imminent, the algorithm modifies the pilot’s input to avoid
the collision while attempting to maintain the pilot’s intent.
The algorithm is implemented using a low-cost on-board
computer, flight-control system, and a two-dimensional laser
illuminated detection and ranging sensor for obstacle detec-
tion along the trajectory of the robot. The sensor data is
processed using a split-and-merge segmentation algorithm
and an approximate Minkowski difference. Results from
flight tests demonstrate the algorithm’s capabilities for tele-
operated collision-free control of an experimental UAV.

Keywords Collision avoidance - Control - Aerial robots

B9 Kam K. Leang
kam.k.leang @utah.edu

Daman Bareiss
daman.bareiss @utah.edu

Joseph R. Bourne
joseph.bourne @utah.edu

' Design, Automation, Robotics, and Control (DARC)
Laboratory, University of Utah Robotics Center, Department
of Mechanical Engineering, University of Utah, Salt Lake
City, UT 84112, USA

Published online: 25 January 2017

1 Introduction

Recent advances in unmanned aerial vehicles (UAVs), such
as improved flight times (Abdilla et al. 2015; Gatti et al.
2015), advanced flight-control systems (Mahony et al. 2012),
and reduced development costs (Han et al. 2013), have led
to a dramatic increase in the number of civil and commer-
cial applications for UAVs. Applications of UAV technology
include mapping and media resources (Nex and Remondino
2013; Neri et al. 2011), search and rescue (Waharte and
Trigoni 2010), precision farming (Barrientos et al. 2011),
space exploration (Landis 2004), traffic management (Lin
2005), environmental monitoring (Hausamann et al. 2005;
Trammell et al. 2003), telecommunication (Brown et al.
2004), and even for entertainment (Yoshimoto et al. 2009). In
fact, many small multirotor UAV's (such as quadcopters) have
the ability to access indoor locations or complex urban envi-
ronments that may be hard to reach or unsafe for humans.
These UAVs are ideally suited for search and rescue, law
enforcement, and/or emergency response to enhance situa-
tional awareness (Goodrich et al. 2008; Tomic et al. 2012;
Cole et al. 2006; Cook et al. 2015; Kumar et al. 2011).
Despite recent advances in the design and development of
UAVs, particularly hover-capable rotorcraft UAVs, the task
of carefully controlling the UAV through a cluttered envi-
ronment and avoiding a collision with nearby obstacles and
humans remains a challenge (Mohammed et al. 2014; Vala-
vanis et al. 2014). Thus, one of the most daunting tasks for
even a skilled UAV pilot is collision avoidance, especially
when a UAV is deployed to help look for survivors inside of
a partially collapsed building where usually the only feed-
back information is a live-camera feed from the vehicle. The
need for automatic collision avoidance technology is critical
and necessary to allow pilots to focus on higher-priority tasks

@ Springer

Auton Robot

such as locating survivors and/or assessing potential dangers
and damage.

Herein, an on-board model-based automatic collision
avoidance algorithm that considers sensing and estimation
uncertainties while maintaining the user’s intent is described,
implemented, and validated on a custom-designed experi-
mental multi-rotor UAV system. Specifically, a collision is
avoided by exploiting the dynamics of the robot and the mea-
sured relative distances between objects in the environment
for automatically determining control inputs to safely steer
the UAV away from obstacles. This work is based on lever-
aging the theoretical developments presented by (Israelsen
et al. 2014; Bareiss et al. 2015) and it is not only applicable
to UAVSs, but the algorithm can be applied to other robotic
and autonomous systems — such as self-driving cars — where
collision avoidance is needed.

The block diagram of the collision avoidance approach
along with the new proposed on-board sensing scheme is
shown in Fig. 1. During flight, the UAV with on-board com-
putation continuously predicts the trajectory of the robot
given the pilot’s input. At the same time, on-board sens-
ing such as laser illuminated detection and ranging (LIDAR)
sensors are used for sensing obstacles along the trajectory
of the robot. To allow implementation on low-cost on-
board computation, the LIDAR data is processed using a
split-and-merge segmentation algorithm and an approximate
Minkowski difference, and the information is used to pre-
dict a collision. If the predicted trajectory and the sensing
information result in a possible collision, then the algorithm
alters the input to the robot to avoid a collision. Measure-
ment error combined with uncertainty in state estimation (due
to the fact that a model of the robot’s dynamics are used)
are also considered in the algorithm. It is pointed out that
when on-board sensing technology is used the uncertainty in
the sensor’s output can affect the performance of the colli-
sion avoidance algorithm. For example, the popular Hokuyo
RG-04LX-UGO01 LIDAR range sensor most commonly used
in robotics for obstacle avoidance has an accuracy up to
+3% of the measurement. Because sensing and state esti-
mation uncertainties are inherent in real-world applications,
it is necessary to consider these uncertainties in the collision
avoidance algorithm.

The main contribution of this work is the real-world
implementation and verification of the proposed local,
model-based automatic collision avoidance algorithm for
remotely-piloted UAVs with on-board sensing. Compared
to existing local or reactive approaches such as the poten-
tial field technique (Khatib 1986), the dynamic window
approach (Fox et al. 1997), velocity obstacles (Fiorini and
Shiller 1998), and vector field histograms (VFH) (Borenstein
and Koren 1991), the proposed approach is based upon local
sensor information but can exploit both global information
as well. The approach also considers the uncertainty in the

) Springer

: ---------------
i ’ m
L]
u 1| P g & ﬁ
Pl - e ¥ W

Collion svoudsnce block

LAY with on-board
semiseng afwd conitred

Fig. 1 Automatic collision avoidance for tele-operated UAVs: A UAV
pilot controls the aerial vehicle and provides input u. When a collision
is detected with on-board sensing and state estimation, the algorithm
produces an input Au that augments the pilot’s input u to steer the
robot away from the obstacle. The control block diagram includes the
sensing block and the collision avoidance block where the pilot’s input u
is passed through the dynamics model to obtain the estimated trajectory
p along with uncertainty in the motion model m. This trajectory is
checked for collisions against the obstacles O. If a collision is detected,
the algorithm calculates a change in input Au to avoid collisions. If the
input u 4 Au is deemed safe, it is then passed to the robot

estimation and measurement process, and applies to the full
(possibly nonlinear) robot dynamics.

The remainder of this paper is structured as follows. A
detailed summary of related work and the comparison of
this work to similar techniques is presented in Sect. 2. A
detailed summary of the stochastic collision avoidance algo-
rithm 1s given in Sect. 3, followed by a description of the
custom-designed experimental UAV system with on-board
computation and obstacle detection in Sect. 4. The experi-
mental results and discussion are presented in Sect. 5. Finally,
concluding remarks and a discussion of future work are pre-
sented in Sect. 6.

2 Related work and state-of-the-art

Collision avoidance 1s an important research topic inrobotics,
where numerous approaches have been developed and
applied to manufacturing systems (Wang 1990), medi-
cal devices (D’Attanasio et al. 2000), and mobile service
robots (Borenstein and Koren 1991). Some early methods
include potential fields (Khatib 1986), the dynamic window
approach (Fox et al. 1997), velocity obstacles (Fiorini and
Shiller 1998), and vector field histograms (VFH) (Borenstein
and Koren 1991). In general, collision avoidance methods can
be classified into one of two main categories: global (motion
planning methods) and local (reactive methods).

First, avoiding collisions between a mobile robot and
obstacles can be achieved through a global motion plan-
ning algorithm which typically assumes a priori information
about the environment (Niewenhuisen and Behnke 2015;

Auton Robot

Patil et al. 2012; Muller and Sukhatme 2014). In (Achtelik
et al. 2014), a path planning approach is used where col-
lisions are avoided during the trajectory generation stage.
These methods search the robot’s possible trajectories for the
best trajectory with respect to some goal, typically choosing a
trajectory that minimize the uncertainty while reaching some
desired goal state (i.e., position). Often, global planners are
computationally expensive and complete information about
the environment is required. Thus, in applications where
robots are equipped with cameras for search and rescue in
collapsed buildings or in unstructured environments, global
planners may provide limited performance.

The second class of collision avoidance algorithms are
local or reactive methods. These methods do not optimize
a trajectory, but rather they find a change in control input
that will approximately avoid collisions given some local
knowledge (sensor information) of the obstacles and environ-
ment. Many of the reactive algorithms use relative sensing
information and develop control laws that guarantee sep-
aration between agents (and obstacles) in the presence of
uncertainty (Rodriguez-Seda et al. 2011). Other techniques
deal with state uncertainty by exploiting dynamic program-
ming (Chryssanthacopoulos and Kochenderfer 2011).

In many implementations of the local algorithms the
collision avoidance is approximated through a first-order
model by predicting time to impact between the robot and
an obstacle while only considering some maximum accel-
eration (Mendes and Ventura 2013; Brand et al. 2014,
Rehmitullah and Kelly 2015; Stegagno et al. 2014). The algo-
rithm in this paper performs collision avoidance with an
explicit model of the robot’s full, possibly nonlinear, equa-
tions of motion, rather than approximating collisions through
the relative velocity formulation.

Integrated global and local planners have been explored,
where these algorithms use a predicted trajectory to avoid
collisions with the observable, local obstacle (Fiorimi and
Shiller 1998). Typically, these algorithms avoid collisions
by computing a given change in input for a current sensing-
action cycle (Li and Tao 2009; Adams et al. 2007; Rodriguez-
Seda et al. 2011). The approach in this paper is intended for
use with local sensor information, however, it can also be
applied in situations where global knowledge is provided.
Additionally, the formulation is applicable to the full robot
dynamics and the method considers explicitly the uncertainty
in the estimation and measurement process.

In (Mendes and Ventura 2013), the FastSLAM algo-
rithm (Montemerlo et al. 2002) is implemented to predict
distance to obstacles. Much research has been focused on
using vision to detect and avoid obstacles, especially in the
field of autonomous automobiles (Huh et al. 2008; Bernini
etal. 2014). Vision has been applied to obstacle detection and
avoidance in UAVs as well (Agrawal et al. 2015; Matthies
et al. 2014; Saha et al. 2014; Mejias et al. 2010). Vision has

been shown to provide robust obstacle position estimates, but
it can be computationally expensive when compared to the
more traditional approach of using range-based sensors such
as described in (Astilla et al. 2015; Maier et al. 2012; Wang
et al. 2015).

3 Automatic collision avoidance algorithm

This section presents the details and main results of the
model-based stochastic automatic collision avoidance algo-
rithm. Additional details of the theoretical framework are
described in (Bareiss et al. 2015). First, the problem is for-
mally defined below in Sect. 3.1, followed by details of
the algorithm in Sect. 3.2. It is pointed out that the work
in (Bareiss et al. 20135; Israelsen et al. 2014) assumed that
the UAV was not able to yaw by operator commands. On
the other hand, for many applications including search-and-
rescue, the UAV pilot must be able to provide ayaw command
to the robot to enable the operator to search and survey a
given area through video feedback. Thus, the method pro-
posed herein incorporates yaw for practical application in
UAVs and Sect. 3.2.4 presents the details.

3.1 Problem formulation
3.1.1 Notation

Throughout this paper, vectors are denoted by boldface
lower-case letters, for example a. Vector sets are represented
by calligraphics, such as .A. Scalar and matrices are denoted
by lowercase italic letters, such as a, and uppercase italic
letters, such as A, respectively. Scalar and matrix multipli-
cations as well as Minkowski sums of sets are defined as
follows:

xA={xa|aec A} (1)
XA={Xa|ac A}, (2)
X A={x+a|xe X aec A} (3)

A vector a that is sampled from a normal distribution with
mean a and variance X', where X is positive-semidefinite, is
given by

a~N(@,ZX). (4)
3.1.2 Problem definition

Consider a robot with general, potentially nonlinear, equa-
tions of motion and a state space of dimension m. Let the state

space of the robotbe & C R™ and let the control input space

be l{ C IR". Let the continuous-time equations of motion
of the robot be defined by the functionf € X’ x If — R™,

@ Springer

Auton Robot

x(1) = f(x(t),u(®)) + m, m~ N(0, M), (3)

where x(1) € X and u(r) € U are the state and control input
at time ¢, respectively. It is assumed that the motion of the
robot is corrupted by zero-mean Gaussian noise m € R™
with a given covariance M € R™*™, where M is positive
semi-definite.

For a given input u, the predicted state X(7) follows the
relationship

%(1) = £(x(0). u. 1). (6)

Given an initial true and predicted state, x = x(0) and

X = X(0), respectively, and a constant input u, the state of
the robot for ¢ > 0 is defined by

x(1) ~ N (x(1), P(1)), (7
where X(1) = g(X, u, t) is the expected state at time ¢, g €

A xU xR — A represents the solution to Eq. (5), and P(1)
is the uncertainty of the state, defined as

P(1)=E [(I{f} — X(1))(x(r) —i{f}}r]. (8)

The uncertainty at time ¢, Eq. (8), is found by solving the
following differential equation:

P(t)y=ADP)+POAN + M, (9)
of

A) = = (k(0), u(1)). (10)
X

Let B9 be the workspace in which the robot maneuvers,
where typically d < 3, and let © C R define the subset of
the workspace occupied by obstacles. In order to maintain
compatibility with the implementation of on-board sensing,
those regions of the workspace that are occluded by the
obstacles as seen from the current state of the robot are also
considered obstacles, meaning the subspace of the workspace
that cannot be seen by the robot is also considered an obsta-
cle. The obstacles’ positions can be defined relative to the
robot’s position including uncertainty with known variance
Z(x) € R4*d 44

o= Joi@iw}, w~N© Z(x), (11)

where O, represents individual objects in the environment
that are considered obstacles and w is drawn from a zero-
mean normal distribution with variance Z(x). The variance
in the sensing Z(x) is a function of the state X to represent how
the uncertainty in some sensors can change with the distance
to obstacles, such as with laser rangefinders the uncertainty
typically decreases as the distance to an object decreases.

@ Springer

Let R(x) c RY denote the subset of the workspace occu-
pied by the robot when it is in state x € &', A colliding state
is then defined as
Rx(1)NO £ @. (12)

The problem is now defined as finding a minimal change
Au € U to the control input u € U{ given the initial state X €
A of the robot to avoid collisions with obstacles within some
time horizon t. The probability that the robot will collide
with an obstacle given the variance in the state estimate and

obstacle location must be less than p for all time less than
the time horizon t € IR, therefore

minimize: Au’ R Au
subject to:

p(Vt € [0, T1:R(x())NO =0 | P(1), Z(x)) < p, (13)

where R € R"™" is a positive-definite weight matrix and
P(t) is the variance in the forward prediction of the state.

3.2 Technical approach

In the following, a model-based feedforward approach is pre-
sented for collision avoidance (see block diagram in Fig. 1).

3.2.1 Assumptions

First, the following assumptions are made to simplify
the nonlinear, non-convex optimization problem for real-
time implementation with potentially limited computational
power:

1. The robot’s position p € R can be derived from the state
through a projection

p(t) = Cx(1), (14)

where C € R9*™,

2. The geometry of the robot R is defined as the smallest
enclosing sphere centered at its reference point such that
the geometry is rotationally invariant. Let R(p) ¢ RY
be the spherical, or ellipsoidal, subset of the workspace
occupied by the robot at position p.

3. The robot’s trajectory can be represented through a first-
order Taylor expansion, i.e.,

b, Au) ~ p* (1) + J (1) Au, (15)
where

it . g .

p () =Cg(x,u,t), J(1) = CE(K.. u,t). (16)

Auton Robot

4. If the robot is collision-free at time t with respect
to an appropriately chosen convex subset of the free
workspace, then it is assumed that the robot is also
collision-free for all time ¢ [0, t]. This is reasonable
for relatively short time horizons t.

3.2.2 Algorithmic solution

Given the robot’s current state x and the current control input
u (from the operator), the estimated positions of the robot in
the future are found by Eq. (15) (see block diagram in Fig. 1).
The variance on the predicted state is given in Eq. (8).

From Assumption 1, the mapping from the robot’s state to
its position also defines the variance on the robot’s position,
Tl

P(ty=CP@1)CT. (17)

From Assumption 4, when there is uncertainty in both
the obstacle location and the robot’s estimated trajectory, a
probability for a collision is to be considered rather than a
guaranteed prediction of a collision. Thus, given independent
Gaussian distributions representing the uncertainty in both
the trajectory estimation and the obstacle location, respec-
tively, the probability for a collision is non-zero if

Preotlision = {N{fl*(ﬂ, P.(t)+ Z(x))NO) # Q. (I8)

The robot is considered to be probabilistically collision-free
forall time ¢ € [0, r]if the probability for a collision to occur
is less than the confidence bound p given the distributions of
the position estimate and obstacle locations, i.e.,

p((R(p(r)) N O # B) | (Peoltision # @) < p. (19)

For a trajectory that is determined to be collision free, the
current operator’s input u is deemed safe and does not need
to be changed, hence Au = 0. However, if the probability
for a collision is greater than the confidence bound p then
the operator’s input is deemed unsafe and must be corrected
in order for the robot to obtain a collision-free trajectory,
resulting in Au #= 0.

Let p. be defined as the first point along the trajectory that
has a probability of colliding with an obstacle greater than
the confidence bound, thus

Pe =P () (20)

where

te=argming o, | {p((R(p(1)) N O # @) | (Peoltision 7 ¥)) > pl.
(21)

Fig. 2 Shown is a scenario where a quadcopter UAV has uncertainty
in both its trajectory estimation and the obstacle location. The a priori
variance P.(t) + Z(x) for a given obstacle normal n is represented as
n” (P.(1)+ Z(x))n. The collision point p, is defined as the point along
the trajectory where this transformed variance is some distance from
the obstacle based on the selected confidence bound p, The halfspace
is defined such that n” p(r. Au) = ¢, where ¢ = n” p.

The probabilities in Eqs. (19) and (21) can be difficult
to compute exactly. Therefore, an approximate solution is
considered. Given a unit normal vector n of the obstacle O
that points into the free workspace (see Fig. 2), consider
a halfspace with the same normal n (pointing toward the
free space) that provides a convex approximation of the local
free space. The halfspace is located at the collision point p,.,
determined by Eq. (21).

Given the local approximation of the free space provided
by the halfplane, the uncertainty can be mapped into the half-
space by transforming the multivariate distribution along the
normal m into a one-dimensional Gaussian distribution cen-
tered at pe,

Peotiision = N (*(2), 0" (Pe(t) + Z(x))m). (22)

Using this approximate representation of the uncertainty,
the probability of avoiding collision can now be represented
very simply by the number of standard deviations for a
desired confidence bound.

Equation (19), given this approximate representation of
the uncertainty, is now redefined such that the robot is con-
sidered to be collision-free for all time ¢ € [0, 7] if
Yt € [0, T]2R(P* (1)) N (O P {on}) =@, (23)
where & is the offset distance calculated from the standard
deviation and selected confidence bound p with

& =an’ /P.(t) + Z(xX)n, (24)

where a is a scaling factor that corresponds to the Chi-
Squared distribution for the selected confidence bound p.

@ Springer

Auton Robot

(a)

Fig. 3 The iterative process of the collision avoidance algorithm: a A
trajectory, P(r, 0, is estimated from the original operator’s input such
that Au = 0. The variance on this estimated position 1s shown as the
gray ellipsoid located at p(t, 0). Considering this uncertainty, a new
input, u+ Auy, is determined to avoid the first detected collision. b The
trajectory, Pp(t, Auy), for the new input is predicted. This also results

Equations (20) and (21) can now be approximated by the
following simplified expression:

pc = b* (argmin, {R(* (1)) N (O & {6m}) # 7)),
(25)

where if the system has no uncertainty & = 0, then
Eqgs. (23) and (25) are equivalent to the deterministic solution
in (Israelsen et al. 2014).

Next, given Egs. (23) and (20), a linear constraint is
defined on the position p(t, Au) of the robot at time 7 (see

Eq. (2)),
n’ p(z, Au) > n'p,. (26)
Substituting Eq. (15) from Assumption 3, the constraint
on the robot’s position in Eq. (26) can be transformed into a
constraint on its change in input Au, hence
T T ~
n’ J(z)Au > 0’ (p, — p*(2)). (27)

Equation (13) is approximated using Eq. (27) as

minimize: Au’ R Au

subjectto: n’ J(7)Au > n’ (p, — p* (1)), (28)
where solving this convex optimization, such as is done by
the RVO library in (van den Berg et al. 2011), provides a
collision free change in input Au with the control input given
to the robot as u + Au.

3.2.3 Handling convex corners

The use of an approximation of a convex region of the local
free space near the robot’s trajectory means that it cannot be

@ Springer

(b)

in a collision and the algorithm computes a new change in input Au;
with respect halfplane constraints defined by both the initial trajectory
p(r,0) and p(r, hm}. The resulting trajectory p(t, Aus) is collision
free and the input u+ Au, is passed to the robot (compare block diagram
in Fig. 1)

assumed that the newly selected control input u + Au avoids
collisions with respect to all obstacles for all time ¢ € [0, 7].
This is, in particular, true near convex edges or corners of
the workspace as shown in Fig. 3. However, the approach
can simply be repeated in an iterative fashion to solve this
problem as described below.

Assume the algorithm has computed a change in control
input according to Eq. (13) and that it is the first iteration
of the algorithm. Continuing to iteration i, the control input
u + Auw; is used to extrapolate the trajectory and check for
a potential collision. If a collision is found to occur, a new
linear constraint is defined as

al Au > b;, (29)
where

a/ =n/ Ji(1), (30)
b; =n (p.; — Pi(1)). (31)

The convex optimization problem in Eq. (28) can now be
solved for all iterations i by the following:

minimize: Au’ R Au

subject to: (Y;_, {al Au > b;}. (32)

Thus, every ith iteration of the algorithm introduces an
additional constraint to the convex optimization problem.
After at most d iterations, the control input u + Au is then
applied to the robot. The number of iterations, and therefore,
the number of constraints is maximized at d, where d is the
dimension of the workspace. This upper limit accounts for
corners of the free space in d dimensions as shown in Fig. 3.
This iterative approach is performed during every sensing-
action cycle of the robot.

Auton Robot

(1) Flight controller

@ RF transmitter
@Emar SEMSOIS

Fig. 4 The custom-designed experimental quadcopter UAV system
with on-board obstacle detection hardware shown on the left. The
Odroid XU4, running the Robot Operating System (ROS), reads the
sensor data and runs the algorithms on-board and provides commands
to the Pixhawk autopilot to control the motion of the UAV. On the right

This iterative approach aligns with the LP-type algorithm
in (De Berg et al. 2008). The LP-algorithm solves low-
dimensional convex optimization problems in (i) expected
time by considering the constraints in an iterative fashion,
where i is the number of constraints. The dimension of the
optimization problem in this paper equals the dimension n of
the control input Au, which, typically, is equal to the dimen-
sion d of the workspace. Maximizing the number of iterations

to d ensures the convex optimization problem remains feasi-
ble.

3.2.4 Incorporating vaw control

For a hover-capable multi-rotor UAV, yaw is a redundant
degree-of-freedom that can be held constant. This condition
is further emphasized in Sect. 4.1.1. However, when the UAV
is equipped with cameras that enable a pilot to survey an area
in applications such as a search and rescue, the pilot must be
able to rotate the robot. This is particularly important if the
pilot is flying through a first person video feed on a forward-
facing camera.

The yaw degree-of-freedom is controlled completely by
the pilot, meaning the algorithm does not anugment this input.
As discussed in Sect. 3.2.3, the dimension of the input
adjusted by the algorithm is equal to the dimension of the
workspace d to ensure the convex optimization problem is
feasible. However, the yaw rate of the robot can still be con-
trolled by the user with this algorithm. The algorithm will
calculate the feedforward trajectory estimate assuming a con-
stant yaw-rate (from the user) and will calculate the new roll,
pitch, and thrust at time ¢ = 0 to avoid a collision at time .
The yaw-rate affects the algorithm’s change in roll and pitch
through the Jacobian in Eq. (16).

!:EE-Single-bﬂard computer wi' wifi

fi“j Spinning LIDAR sensor

shows the top-down view of the quadcopter and the x/y coordinate
frame in which the 2D spinning LIDAR provides data. The range finders
(single-point LIDAR and sonar sensors) are oriented in the z-direction
in and out of the page

Itis pointed out that the maximum yaw-rate and time hori-
zon must be carefully selected. If either value is too large the
predicted trajectory of the robot can be poorly predicted by
Assumption 3 or can violate Assumption 4, possibly leading
to collisions.

4 The experimental UAV system with on-board
computation and sensing

In this section, the custom-designed experimental quad-
copter UAV system is described, along with the on-board
obstacle detection hardware and relevant signal processing
algorithms.

4.1 The experimental quadcopter UAV system

The collision avoidance and obstacle detection algorithms are
implemented on a custom-designed physical quadrotor heli-
copter shown in Fig. 4. The UAV has a footprint of 75 cm from
rotor-tip to rotor-tip. In Fig. 4, the key components are listed,
where the quadcopter uses the Pixhawk commercial autopi-
lot from 3D Robotics for flight control. The 2D spinning
LIDAR is the RPLidar 360° LIDAR. The RPLidar has a 1°
resolution, providing 360 readings, at a frequency of 10 Hz.
The update frequency of the LIDAR is low for the potential
speeds of the quadrotor, but experiments were able to demon-
strate collision avoidance in the less-than-ideal conditions. A
faster LIDAR update could allow for faster motion while still
avoiding collisions. The LIDAR-Lite laser rangefinder from
PulsedLight serves as the downward-facing laser rangefinder.
In addition, the system has two upward-facing sonar sensors
(Maxbotix XL-EZ4); however, the experiments performed

@ Springer

Auton Robot

focus on the results of collision avoidance with respect to
walls in the environment using the 2D LIDAR rather than
the floor and ceiling.

The collision avoidance algorithm is running on an
on-board single-board computer (Odroid XU4) at a fixed fre-
quency of 50 Hz. The computer is equipped with the Ubuntu
14.04 operating system running the Robot Operating System
(ROS), version Indigo. The Pixhawk and sensors are con-
nected to the Odroid through a USB interface. The Pixhawk
receives the pilot’s desired roll, pitch, yaw rate, and throt-
tle commands through a standard 2.4 GHz RC transmitter
and passes these values to the Odroid. These inputs are then
updated if a collision is predicted and the new values are
passed from the Odroid to the Pixhawk to control the motion
of the robot.

4.1.1 Robot dynamics

The Pixhawk autopilot contains on-board proportional-
integral-derivative (PID) controllers to stabilize the attitude
of the robot. The Pixhawk also allows for an input of a throttle
command. This throttle command is calculated by a velocity
controller based on the pilot’s throttle stick command. The
closed-loop model is used to calculate the feedforward trajec-
tory estimate provided an estimate of the current state through
an on-board Kalman Filter, implemented on the Odroid. The
model has a 12-dimensional state that consists of position
p € R3, velocity v € R?, Euler RPY angles r € R?, and
angular velocity w € R?:

x:[pT',vTI,rT,W]TErY. (33)

The 4-dimensional control input consists of the desired
roll and pitch angles, r} and r} respectively, the vertical
velocity vZ, and the yaw-rate w?:

u=[r;,r, v, wil’ elU. (34)

The equations of motion are given as

p="v, (35)
v=R[0.0,kp (v} —v)]" — g, (36)
P =w, (37)

kpx{r; == rx) — kdxw_r
W= | kpy(r} —ry) — kaywy |, (38)
ke (W} — W)

where R is the rotation matrix from the robot frame into the
world frame, the terms Ky, kpx, kax, kpy, kay, and kp, are
gains whose values were determined through system iden-
tification of the physical system. These model parameters,
given in Table 1, were determined experimentally using a

@ Springer

Table 1 Quadcopter Dynamic Parameters
py kpn kd.i'i. kp:.-' kd}- 'kp'.f.

Value 10.0

Parameter k

150.0 2.9 150.0 25 3.5

motion capture system to determine the quadcopter’s roll
and pitch angles in response to step command from the
remote controller. These parameters are estimates for the
entire closed-loop system from the stick position on the
remote control to the measured attitude of the quadrotor. The
onboard stabilization controllers were provided by the Pix-
hawk autopilot system and the provided PID gains were used
on the quadrotor system.

4.2 On-board obstacle detection

The algorithm, in general, requires a set of three-dimensional
planar faces to perform the collision avoidance. However, to
simplify the problem a two-dimensional spinning LIDAR
and one-dimensional laser rangefinders are used to detect
obstacles. The LIDAR provides a set of 2D data points rep-
resenting the distance to the nearest object in the x/y plane
of the quadcopter body frame (see Fig. 4). These obstacles
are assumed to be vertical in the inertial frame such that the
2D data can be used rather than utilizing a 3D point cloud
rangefinder, allowing for fast computation with onboard pro-
cessing without requiring more complex implementations
such as GPU processing. This assumption is feasible for sit-
uations where the user will not be commanding large vertical
velocities at the same time as large roll or pitch commands,
possibly creating a trajectory into an unsensed region of the
workspace.

4.2.1 LIDAR segmentation

In order to provide a more efficient obstacle representation to
the collision aveidance algorithm in this paper, the 2D range
data provided by the spinning LIDAR will be segmented
through the clustering and split-and-merge algorithm as dis-
cussed in (Nguyen et al. 2007). This will reduce the number
of planar faces that must be checked for a collision against the
predicted trajectory of the robot. The algorithm is presented
below in Algorithm 1 and described next.

The clustering process first takes the list of raw range
readings from the sensor and separates it into clusters. If
two points have a difference in range greater than a pre-
defined magnitude ryyeqn then they are considered to be two
separate sets of data and the list of range data is split between
the two example points (Fig. 5a). Next, these subsets from
the clustering process are provided to the split-and-merge
algorithm. The split-and-merge process considers each set
of points and creates a line between the first and last points

Auton Robot

(d)

Fig. 5 The graphical representation of the clustering and split-and-
merge algorithm for the LIDAR data. a First, the data is clustered based
on the difference in the range data. If two points have a radial distance
greater than a threshold [r) — ra| > riygeq then they are clustered sepa-
rately, shown as sets of blue and red points for the two clusters. b Shown
is the red cluster performing the split-and-merge algorithm. A line is
created between the beginning and end of the cluster and the distance
d of the point furthest from the line is calculated. If that distance is
greater than a threshold d > dyyeqn, the cluster is split at that point. ¢
The results from (b) were split to create two separate clusters of points.
These two new clusters have their furthest point within the threshold
di < dmax and dy < dpax as shown. Therefore, the split-and-merge
algorithm is complete for that set of clusters. d Shown is the result of
the clustering and split-and-merge algorithm on the small example data
set

in a given cluster. The point between the first and last point in
the segment, if one exists, with the maximum distance to the
line is selected (Fig. 5b). If that computed maximum distance
is greater than some threshold d,.. the segment is split into
two segments at the point with the maximal distance to the
line between the first and last points (Fig. 5c). This process is
continued over all subsets until a list of line segments remains
where all the data points are within dy,, distance from one
of the line segments (Fig. 5d). The first and last point in each
of the resulting segments are then considered as vertices of
the obstacles for the collision avoidance algorithm.

4.2.2 Minkowski difference algorithm

The data that has been processed by the LIDAR segmenta-
tion, discussed previously, is used to compute an approximate
Minkowski difference which will expand the obstacles by the
robot’s radius. This new volume, after the Minkowski differ-
ence, is provided to the collision avoidance algorithm as the
true obstacles to avoid in the environment. A fast Minkowski
solution such as those in (Lien 2007; Behar and Lien 2011)
can be used if the robot or obstacles are complicated shapes,
however, in this application the robot is bounded by the
minimum volume sphere. Given the simple geometry of the
sphere, the Minkowski difference was implemented approx-
imately and directly to avoid the additional computations of,

for example, the reduced convolutions in (Behar and Lien
2011).

Algorithm 1 Clustering and Split-and-Merge
L « sp, 51, ..., sy ranges from LIDAR
forall 5; € £ do
if |s; =i 1| > Finresh OF |5; = 5i41| > Fiheest then
Split £ at 5;
end if
end for
forall £; € Ly, Ly, ..., Ly do
L « line between endpoints of L;
d « max(distance(L, s, € £;))
if d = dy., then
Split £ at argmax (distance(L, 5. € L))
else
Segment £; is complete
end if
end for

4.2.3 Practical considerations

The algorithm previously presented is developed to provide
collision-free motion including uncertainty in the forward
prediction of the trajectory as well as in the obstacles’ sensed
positions. In (Bareiss et al. 2015), the algorithm was studied
for varying amounts of uncertainty and confidence bounds.
Provided the uncertainty covariance matrices, the experi-
mental application in this paper could follow that approach
directly, however, during preliminary experiments the per-
formance of the algorithm was found to be dominated by
other factors discussed next and these covariances were not
implemented directly.

When the quadcopter is some small distance from the wall
and uncertainty causes it to move closer to the wall than the
offset distance value ¢ in Eq. (24), the algorithm will provide
a small desired roll and pitch angles. The Pixhawk autopi-
lot was found to be unable to respond to these small inputs
as they are within the signal-to-noise ratio from the lower-
quality sensors hardware. This could lead the quadcopter to
not physically respond to the algorithm’s desired output. Sec-
ondly, this application on a multi-rotor vehicle in constrained
indoor environments is also subject to aerodynamic distur-
bances which can be large and difficult to model as shown in
current research (Hooietal. 2015; Yeoetal. 2016). These dis-
turbances will also likely violate the assumptions in (Bareiss
et al. 2015) that the noise can be modeled as normal distri-
bution.

The lack of control authority for low-angle desired roll
and pitch as well as aerodynamic disturbances were found to
dominate the performance of the algorithm, leading to colli-
sions. Therefore, through preliminary experiments a constant
offset distance value of 6 = 1.2 m was empirically selected.
Even in situations with the combined effects of the state
estimate error, lack of control authority, and aerodynamic
disturbances, this value of & was observed to be able to keep
the quadcopter free of collisions. Provided a perfect model,
the robot would never achieve a distance to an obstacle less

é‘_j Springer

Auton Robot

than the offset &. However, in the presence of the mentioned
uncertainties, the robot can potentially overshoot this value
and move closer to obstacles than value, but will still avoid
collisions.

5 Experimental results and discussion

The model-based collision avoidance algorithm was imple-
mented on the experimental quadcopter system to demon-
strate the performance of the algorithm. In particular, four
cases were studied. In the first case the pilot commanded
the aerial robot to fly straight at a wall. In the second case,
the pilot flew the robot into a corner. In the third case, the
pilot flew the robot through a zone with internal obstacles.
Finally, in the fourth experiment the robot was flown through
a hallway with an “S” turn. In each experiment, the data
from the spinning LIDAR was collected as well as the out-
put of the split-and-merge segmentation and the approximate
Minkowski difference. The initial desired trajectory from the
pilot’s input 1s also recorded along with the final, collision
free trajectory the algorithm calculates. In all four cases, the
robot executed the algorithm and performed as expected, and
the measured responses also agreed with simulations and
expected behaviors. The results are described next.

In first case, the quadcopter was flown straight at a wall
and the results are shown in Fig. 6. The series of images
shown in the first two columns in Fig. 6 present a sequence of
side- and top-view images extracted from recorded video dur-
ing the experiment. The results on the far right-hand column
shows the recorded raw LIDAR points, segmented points,
Minkowski points, and the initial and final trajectories of the
robot at the corresponding time steps. The red arrows show
the desired trajectory given the user’s input while the green
arrows show the resultant trajectory from the algorithm. Also,
it can be seen in the sensor data in the right column that there
are times when the LIDAR returns a maximum range reading
when it should be located on the obstacle. This 1s from errors
in the LIDAR that can be filtered with post-processing, how-
ever, in this paper these “blips™ in the scan are accounted for
in the Minkowski difference and do not need to be filtered
from the LIDAR data initially. As can be seen, initially at
t = 2s the robot is commanded to fly into the wall on the
left, indicated by the red arrow. Since the wall was sufficiently
far from the robot, the algorithm did not alter the pilot’s con-
trol input. But as the relative distance between the wall and
robot began to shrink (¢t = 4., 6, 8s) and a possible collision
was detected by the on-board LIDAR sensor, the algorithm
began to adjust the control input such that it forced the robot
to slow down, and eventually come to a stop in front of the
wall in the limiting case, irrespective of the pilot continuing
to command the robot towards the wall. The motion away
from the wall rather than completely stopping is a result of

@ Springer

uncertainty in the motion model causing the robot to pass the
safety bound (¢t = 6, 8 s) of the algorithm and have to reverse
(r = 10s), overshooting the desired position. A more accu-
rate state estimate through additional sensors would reduce
the magnitude of this overshoot. Based on the results in this
first case, the robot can automatically detect an obstacle (such
as the wall) along its trajectory and the algorithm altered the
control input to avoid a collision.

In the second case, the quadcopter was flown at a corner
and the experimental results are shown in Fig. 7. As shown,
the robot was first flown towards a wall on its right and then it
strafed along that wall into the corner (1 = 2, 45), followed
by strafing along the wall in front of the robot (¢t = 6, 8, 10s)
as shown in the sequence of images in the first column in
Fig. 7. The resulting behavior is collision-free motion with
respect to both of the walls. Again, it can be seen in the
physical sensor data in the right-hand column in Fig. 7 that
there are times when the LIDAR returns a maximum range
reading when it should be located on the obstacle, but these
errors are accounted for in the Minkowski difference. Similar
to the results from Case 1, the robot can automatically detect
surrounding obstacles in the x/y plane (such as two walls that
form a corner) along its trajectory and modify the control
input to avoid a collision.

In the third case, the robot was tested to determine it’s
ability to handle internal obstacles (such as office file cab-
inets). As shown in Fig. 9, the quadcopter was flown at a
narrow obstacle that is within the environment rather than
only using the exterior walls. The quadcopter flies towards
the cabinet obstacle (t+ = 0, 1s) until it then strafes to the
right along the front face of the cabinet (t = 2, 3s). After
passing the cabinet, the quadcopter is able to move towards
the wall and come to a stop (1 =4 — 9s).

Finally, in the fourth case, both simulations and exper-
iments were performed to study the performance of the
algorithm in a more natural environment such as flying
through an “S”-shaped basement hallway. Simulation of
the hallway scenario was created within a deterministic
simulation environment (V-REP, Coppelia Robotics) to be
compared to the real-world experimental results. The simu-
lation used the robot model presented above in Sect. 4.1.1
and the collision avoidance algorithm presented herein. The
simulation and experimental results are shown in Fig. 8a,
b, respectively. The results also include the simulated and
measured raw LIDAR points, segmented points, Minkowski
points, and the initial and final trajectories of the robot at the
corresponding time steps. As shown in both the simulation
and experimental results, the quadcopter was flown from a
straight hallway towards a wall (r = 0, 2, 4, 6s) where it
strafes to the left (1 = 8, 10, 12, 13 5), then the space opened
up into a straight hallway and the robot continues to fly down
the straight hallway (¢t = 14, 16s). Both the simulated tra-
jectories and LIDAR scan data showed good agreement with

Auton Robot

el e B

N oo o os
y(m)

e wm & &

y(m)

o o & b

y(m)

o w-ak

y(m)

o W &b

y(m)

GML"L

y(m)

S N & A

y{m)

2 4
x(m)

—Raw LIDAR points © Segmented points -+~ Minkowski points <e—Initial trajectory ~ <s—Final trajectory

Fig. 6 Case 1: Experimental results where the aerial robot was flown
directly at a wall in front of it. A sequence of time steps is shown along
with the data from the sensors and the resultant desired trajectories. The
left column shows the side view were the quadcopter moves towards the
wall and then back away from it. The motion away from the wall rather

than completely stopping is a result of uncertainty in the motion model
causing the robot to pass the safety bound (r = 6, 85) of the algorithm
and have to reverse (r = 10s), overshooting the desired position. A
more accurate state estimate through additional sensors would reduce
the magnitude of this overshoot

Auton Robot

t=10s

y(m)

B NS N OER B NS O NE BRSO N R
y (m) y(m)

B KOS N A
y (m)

| b-:r-h
y(m)

N eSS 0o
y(m)

x (m)

——Raw LIDAR points ® Segmented points

-s=== Minkowski points -e—Initial trajectory

-=—Final trajectory

Fig. 7 Case 2: Experimental results where the aerial robot was flown
into a corner. The quadcopter is first flown towards the wall on the right
where it then strafes along it temporarily (1 = 2, 45) before then moving

the measured experimental results shown in Fig. 8b. Thus,
the results in this case shows that the robot can automati-
cally detect and react to obstacles along its trajectory and the
results also demonstrate application of the collision avoid-
ance algorithm in a natural environment (Fig. 7).

&) Springer

along the wall in front of it (+ = 6, 8, 10 s), resulting in collision-free
motion with respect to both of the walls

6 Conclusions and future work

In this paper, a feedforward-based automatic collision avoid-
ance algorithm was presented and implemented on an exper-
imental quadcopter with on-board sensing and computation.

Auton Robat

yim)

yim)

yim)

= k & 2 w & bk B o v =2k b 2 ow o bk M o2 o woa
pi{m)

[

y(m)

y{m)

& bk W oo w s bk b o ow &

L]

y(m)

yim)

Bl o e S 5

1]

-2

4

4

2

1]

-2

-4

4

_ 2
0 5, 0 E
= =

-2 3

-4 4

4 4

2 2
0 £ 0 g
o] =

-2 2

4 4

4 4

) 2
0k 0E
= =

od -2

-4 -4

4 4

2 4
0 E 0k
= =

-2 =2

i 4

2 0 <2 4 4 .2 0 -2 4
x (m) £(m)
w—faw LIDAR points @ Segmented poinix v Minkowski points -s—Initial trajectory == Final trajectory

Fig. 8 Case 4: a Simulations and b experiments of the robot flying
through an “S”-shaped basement hallway. The quadcopter was flown
from a straight hallway towards a wall (r = 0,2, 4, 65) where it

From a pilot’s input, the algorithm predicts the trajectory
given its current state that the robot will follow if the input
remains constant over some time horizon. If there is a prob-
ability for a collision along the trajectory greater than some

strafes to the left (r = 8, 10, 12, 13 5), then the space opened up into a
straight hallway and the robot continues to fly down the straight hallway
(t =14, 165%)

predetermined bound, considering uncertainty in the robot’s
motion model and sensing accuracy, then the algorithm mod-
ifies the pilot’s input for a new, collision-free input. A 2D
spinning LIDAR was used to obtain the planar distances to

@ Springer

Auton Robot

Fig. 9 Case 3: In this experiment, the quadcopter is flown at a narrow
obstacle that is within the environment rather than only using the hori-
zontal walls. The quadcopter flies towards the cabinet (¢ = 0, 1s) until
it then strafes to the right along the front face of the cabinet (f = 2, 35).
After passing the cabinet, the quadcopter is able to move towards the
wall and come to a stop (t =4 — 93)

objects in the environment. This range data was processed
using a clustering and split-and-merge algorithm to reduce
the number of planar faces to be considered in the collision
avoidance algorithm. An approximate Minkowski difference
of these planar faces was then used to avoid collisions in real-
time operation. The implementation was tested in a variety
of environments to demonstrate its performance. The quad-
copter was shown to avoid collisions even when the pilot was
intentionally controlling it towards a collision with obstacles
in the environment.

In the future, this algorithm could be improved by includ-
ing an adaptive model for the feedforward trajectory estimate
as well as including additional sensing to provide a more
accurate prediction of collisions. A more accurate collision
prediction through improved models of the aerodynamics as
well as more state estimates for the on-board attitude con-
trollers would allow for the safety buffer to be decreased
which would cause the robot to fly closer to obstacles and
with higher speeds.

Acknowledgements This material is based upon work supported by
the National Science Foundation, Partnership for Innovation Program,
Grant No. 1430328, Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

References

Abdilla, A., Richards, A., & Burrow, S. (2015). Power and endurance
modelling of battery-powered rotorcraft. In JEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS) (pp.
675- 680).

Achtelik, M. W., Lynen, S., Weiss, S., Chli, M., & Siegwart, R. (2014).
Motion- and uncertainty-aware path planning for micro aerial vehi-
cles. Journal of Field Robotics, 31(4), 676-698.

Adams, M., Wijesoma, W. S., & Shacklock, A. (2007). Autonomous
navigation: Achievements in complex environments. IEEE Instru-
mentation and Measurement, 10(3), 15-21.

Agrawal, P, Ramoo, A., & Ghose, D. (2015). Vision based obstacle
detection and avoidance for UAVs using image segmentation. In
AIAA guidance, navigation, and control conference (pp. 848—-857).

ﬂ Springer

Astilla, O., Guerrero, J., Mendoz, R., Teriz, P, & Roxas, M .(2015).
Obstacle avoidance of hybrid mobile-quadrotor vehicle with range
sensors using fuzzy logic control. In International conference on
humanoid, nanotechnology, information technology, communica-
tion and control, environment and management (pp. 1-8).

Bareiss, D., van den Berg J, & Leang, K. K. (2015). Stochastic automatic
collision avoidance for tele-operated unmanned aerial vehicles.
In: IEEE/RSJT international conference on intelligent robots and
systems (IROS) (pp. 4818-4825).

Barrientos, A., Colorado, I., Cerro, J. D., Martinez, A., Rossi, C., Sanz,
D., etal. (2011). Aerial remote sensing in agriculture: A practical
approach to area coverage and path planning for fleets of mini
aerial robots. Journal of Field Robotics, 28(5), 667-689.

Behar, E., & Lien, J. M. (2011). Fast and robust 2d minkowski sum
using reduced convolution. In: IEEE/RSJ international conference
on intelligent robots and systems (pp. 1573-1578).

Bernini, N., Bertozzi, M., Castangia, L., Patander, M., & Sabbatelli,
M. (2014). Real-time obstacle detection using stereo vision for
autonomous ground vehicles: a survey. In IEEE Internationl con-
Jference on intelligent Transportation Systmes (pp. 873-878).

Borenstein, J., & Koren, Y. (1991). The vector field histogram-fast
obstacle avoidance for mobile robots. IEEE Transactions on
Robotics and Automation, 7(3), 278-288.

Brand, C., Schuster, M. J., Hirschmuller, H., & Suppa, M. (2014).
Stereo-vision based obstacle mapping for indoor/foutdoor SLAM.
In: IEEE/RSJ International conference on intelligent robots and
systems (pp. 1846—-1853).

Brown, T., Doshi, 5., Jadhav, 8., & Himmelstain, J. (2004). Test bed
for a wireless network on small UAVs, In: AIAA 3rd " Unmanned
Unlimited” technical conference, workshop, and exhibit (pp. 20—
23).

Chryssanthacopoulos, 1. P, & Kochenderfer, M. J. (2011). Accounting
for state uncertainty in collision avoidance. Journal of Guidance,
Control, and Dynamics, 34(4), 951-960.

Cole, D. T., Sukkarieh, 5., & Goktogan, A. H. (2006). System devel-
opment and demonstration of a wav control architecture for
information gathering missions. Journal of Field Robotics, 23(6—
7). 417-440.

Cook, Z., Zhao, L., Lee,]., & Yim, W. (2015). Unmanned aerial system
for first responders. In: [2th international conference on ubigui-
tous robots and ambient intelligence (URAI) (pp. 306-310).

D’ Attanasio, S., Tonet, O., Megali, G., Carrozza, M. C., & Dario, P.
(2000). A semi-automatic handheld mechatronic endoscope with
collision-avoidance capabilities. In: JEEE international confer-
ence on robotics and automation (pp. 1586-1591).

De Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. (2008).
Computational Geometry: Algorithms and Applications. Berlin:
Springer.

Fionini, P, & Shiller, Z. (1998). Motion planning in dynamic environ-
mnts using velocity obstacles. International Journal of Robotics
Research, 17(7), 760-772.

Fox, D., Burgard, W., & Thrun, 5. (1997). The dynamic window
approach to collision avoidance. IEEE Robotics and Automation
Magazine, 4(1), 23-33.

Gatti, M., Giulietti, F., & Turci, M. (2015). Maximum endurance
for battery-powered rotary-wing aircraft. Aerospace Science and
Technology, 45, 174-179.

Goodrich, M. A, Morse, B. S., Gerhardt, D., Cooper, J. L., Quigley, M.,
Adams, J. A, et al. (2008). Supporting wilderness search and res-
cue using a camera equipped mini UAV. Journal of Field Robotics,
25(1-2), 89-110.

Han, J., Xu, Y, Di, L., & Chen, Y. (2013). Low-cost multi-UAV tech-
nologies for contour mapping of nuclear radiation field. Jouwrnal
of Intelligent & Robotic Systems, 70(1), 401-410.

Auton Robot

Hausamann, D., Zirmig, W., Schreier, G., & Strobl, P. (2005). Monitoring
of gas pipelines a civil UAV application. Aircraft Engineering and
Aerospace Technology, 77(5), 352-360),

Hooi, C. G,, Lagor, F. D., & Paley, D. A, (2015). Flow sensing, estima-
tion and control for rotorcraft in ground effect. In Proceedings of
the IEEE aerospace conference (pp. 1 —8).

Huh, K., Park, J., Hwang, J., & Hong, D. (2008). A stereo vision-
based obstacle detection system in vehicles. Optics and Lasers in
engineering, 26(2), 168—178.

Istaelsen, J., Beall, M., Bareiss, D., Stuart, D., Keeney, E., & van den
Berg, 1. (2014). Automatic collision avoidance for manually
tele-operated unmanned aerial vehicles. In: IEEE international
conference on robotics and automation (pp. 6638—6643).

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and
maobile robots. International Journal of Robotics Research, 5(1),
90-98.

Kumar, M., Cohen, K., & Homchaudhuri, B. (2011). Cooperative con-
trol of multiple uninhabited aerial vehicles for monitoring and
fighting wildfires. Journal of Aerospace Computing, Information,
and Communication, 8(1), 1-16.

Landis, G. A. (2004), Robots and humans: Synergy in planetary explo-
ration. Acta astronautica, 55(12), 985-99{).

Lien, J. M. (2007). Point-based minkowski sum boundary. In /5th
Pacific conference on computer graphics and applications (pp.
261-270).

Lin, P. S., Hagen, L., Valavanis, K., & Zhou, H. (2005). Vision of
unmanned aerial vehicle (UAV) based traffic management for
incidents and emergencies. In 12th World congress on intelligent
transport systems (pp. 1-12).

Li, S., & Tao, G. (2009). Feedback based adaptive compensation of
control system sensor uncertainties. Automatica, 45(2), 393404,

Mahony, R., Kumar, V., & Corke, P. (2012). Multirotor aerial vehicles:
Modeling, estimation, and control of quadrotor. [EEE Robotics &
Automation Magazine, 19(3), 20-32.

Maier, D., Homung, A., & Bennewitz, M. (2012). Real-time navigation
in 3d environments based on depth camera data. In International
conference on humanoid robots (pp. 692-697).

Matthies, L., Brockers, R., Kuwata, Y., & Weiss, 5. (2014). Stereo
vision-based obstacle avoidance for micro air vehicles using dis-
parity space. In IEEE international conference on robotics and
automation (pp. 3242-3249).

Mejias, L., McNamara, S., Lai, J.. & Ford, J. (2010). Vision-based
detection and tracking of aerial targets for UAV collision avoid-
ance. In: JEEE/RSJ International conference on intelligent robots
and systems (pp. 87-92).

Mendes, J., & Ventura, R. (2013). Assisted teleoperation of quadcopters
using obstacle avoidance. Journal of Automation, Mobile Robotics,
& Intelligent Systems, 7(1), 54-58.

Mohammed, F., Idres, A., Mohamed, N.. Al-Jaroodi, J.. & Jawhar, L
(2014). UAVs for smart cities: Opportunities and challenges. In
International conference on unmanned aircraft systems (ICUAS)
(pp. 267 — 273).

Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). Fast-
SLAM: A factored solution to the simultaneous localization and
mapping problem. In AAAI-02 proceedings (pp. 593-598).

Muller, J., & Sukhatme, G. S. (2014). Risk-aware trajectory gener-
ation with application to safe quadrotor landing. In: IEEE/RSJ
international conference on intelligent robots and systems (pp.
3642-3648).

Neri, M., Campi, A., Suffritti, R., Grimaccia, F.,, Sinogas, P., & Guye, O
et al. (2011). SkyMedia-UAV-based capturing of HD/3D content
with WSN augmentation for immersive media experiences. In:
IEEE international conference on multimedia and expo (ICME)
(pp. 1-6). doi:10.1109/ICME.2011.6012133

Nex, F, & Remondino, E (2013). UAV for 3D mapping applications:
A review. Applied Geomatics, 6(1), 1-15.

Nguyen, V., Gachter, S., Martinelli, A., Tomatis, N., & Siegwart, R.
{2007). A comparison of line extraction algorithms using 2d range
data for indoor mobile robotics. Autonomous Robots, 23(2), 97—
111.

Niewenhuisen, M., & Behnke, S. (2015). 3d planning and trajectory
optimization for real-time generation of smooth MAV trajectories.
In: European conference on mobile robots (pp. 1-7).

Patil, 5., van den Berg, J., & Alterovitz, R. (2012). Estimating prob-
ability of collision for safe planning under gaussian motion and
sensing uncertainty. In: JEEE international conference on robotics
and automation (pp. 3238-3244).

Rehmtullah, F, & Kelly, 1. (2015). Vision-based collision avoidance for
personal aerial vehicles using dynamic potential fields. In: /2th
conference on computer and robot vision (pp. 297-304).

Rodriguez-Seda, E. J., Stipanovic, D. M., & Spong, M. W. (2011). Col-
lision avoidance with sensing uncertainties. In American control
conference (pp. 3363-3368).

Saha, S., Natraj, A., & Waharte, 5. (2014). A real-time monocular
vision-based frontal obstacle detection and avoidance for low cost
UAVs in GPS denied environment, In: IEEE International confer-
ence on aerospace electronics and remote sensing technology (pp.
189-195).

Stegagno, P, Basile, M., Bulthoff, H. H., & Franchi, A. (2014). A semi-
autonomous UAV platform for indoor remote operation with visual
and haptic feedback. In JEEE International conference on robotics
and automation (pp. 3862-3869).

Tomic, T., Schmid, K., Lutz, P, Domel, A., Kassecker, M., Mair, E.,
et al. (2012). Toward a fully autonomous UAV: Research platform
for indoor and outdoor urban search and rescue. IEEE Robotics
and Automation Magazine, 19(3), 46-56.

Trammell, H. S., Perry, A. R.. Kumar, 8., Czipott, P. V., Whitecotton, B.
R.. & McManus, T. J., etal. (2005). Using unmanned aerial vehicle-
borne magnetic sensors to detect and locate improvised explosive
devices and unexploded ordnance. In Proceedings of the SPIE
sensors, and command, control, communications, and intelligence
(C31) technologies for homeland security and homeland defense
IV, vol. 5778.

Valavanis, K. P., & Vachtsevanos, G. 1. (2014). UAV Sense, Detect and
Avoid: Introduction. Netherlands: Springer.

van den Berg, J., Guy, S. I., Lin, M., & Manocha, D. (2011). Reciprocal
n-body collision avoidance. In Proceedings of the international
symposium on robotics research (pp. 3—19).

Waharte, S., & Trigoni, N. (2010). Supporting search and rescue opera-
tions with UAVs. In IEEE International Conference on Emerging
Security Technologies (EST).

Wang, T., Bu, L., & Huang, Z. (2015). A new method for obstacle
detection based on kinect depth image. In: Chinese automation
congress(pp. 537-541).

Wang, W. P. (1990). Three-dimensional collision avoidance in produc-
tion automation. Computers in Industry, 15(3). 169—174.

Yeo, D. W., Sydney, N., & Paley, D. A. (2016). Onboard flow sens-
ing for rotary-wing uav pitch control in wind. In: AIAA guidance,
navigation, and control conference (pp. 1386-1396).

Yoshimoto, H., Jo, K., & Hor, K. (2009). Toward entertainment blimps
for everyone by everyone. In Proceedings of the seventh ACM
conference on creativity and cognition (pp. 445-446).

@ Springer

Auton Robot

Daman Bareiss received his
B.S. from Oklahoma State Uni-
versity in 2011, M.Sc. and Ph.D.
degrees in robotics from the
University of Utah, 2014 and
2016, respectively. His research
focuses on collision avoidance
methods for single- and multi-
robot systems. He was the recip-
ient of the NSF IGERT Trainee-
ship for Biocentric Robots, the
ARCS Foundation Fellowship,
and the University of Utah Grad-
uate Research Fellowship. He is
currently a software engineer at
Omron-Adept focusing on mobile robot collision avoidance.

Joseph R. Bourne received his
B.5. degree from the University
of Utah in 2015. He is currently
a Ph.D. student in the Depart-
ment of Mechanical Engineering
working in the DARC (Design,
Automation, Robotics & Con-
trol) Lab, University of Utah
Robotics Center. His research
focuses on control and motion
planning for mobile (aerial and
ground) robots with applica-
tion in autonomous environmen-
tal monitoring, search and res-
cue, and first response.

@ Springer

Kam K. Leang received the B.S.
and M.S. degrees in Mechani-
cal Engineering from the Uni-
versity of Utah, Salt Lake City,
Utah, in December 1997 and
1999, respectively, and the Ph.D.
degree from the University of
Washington, Seattle, Washing-
ton, in December 2004, He is
an Associate Professor in the
Mechanical Engineering Depart-
ment at the University of Utah,
where he joined in July 2014,
He is the Director of the DARC
(Design, Automation, Robotics
& Control) Lab and a member of the University of Utah Robotics Cen-
ter. Between 2008 and 2014, he was at the University of Nevada, Reno.
He currently serves as an Associate Editor for IEEE Control Systems
Magazine, Mechatronics (Elsevier), the International Journal of Intel-
ligent Robotics and Applications (IJIRA), and Frontiers in Mechanical
Engineering (Nature Publishing). He has been involved with conference
organization and editorialship activities, including the American Con-
trol Conference (ACC), IEEE International Conference on Robotics
and Automation (ICRA), and IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM). His research interests
include modeling and precision control of electroactive (smart) material
actuators (piezoelectrics and electroactive polymers), nanopositioning
and scanning probe microscopy, and design, motion planning, and con-
trol of robotic systems. He 1s a member of the ASME and [EEE.

	P01
	p02
	p03
	p04
	p05
	p06
	p07
	p08
	p09
	p10
	p11
	p12
	p13
	p14
	p15
	p16

