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Abstract

This article presents a new decentralized multi-agent information-theoretic (DeMAIT) control algorithm for mobile sen-

sors (agents). The algorithm leverages Bayesian estimation and information-theoretic motion planning for efficient and

effective estimation and localization of a target, such as a chemical gas leak. The algorithm consists of: (1) a non-

parametric Bayesian estimator, (2) an information-theoretic trajectory planner that generates ‘‘informative trajectories’’

for agents to follow, and (3) a controller and collision avoidance algorithm to ensure that each agent follows its trajectory

as closely as possible in a safe manner. Advances include the use of a new information-gain metric and its analytical gra-

dient, which do not depend on an infinite series like prior information metrics. Dynamic programming and multi-

threading techniques are applied to efficiently compute the mutual information to minimize measurement uncertainty. The

estimation and motion planning processes also take into account the dynamics of the sensors and agents. Extensive simu-

lations are conducted to compare the performance between the DeMAIT algorithm to a traditional raster-scanning

method and a clustering method with coordination. The main hypothesis that the DeMAIT algorithm outperforms the

other two methods is validated, specifically where the average localization success rate for the DeMAIT algorithm is (a)

higher and (b) more robust to changes in the source location, robot team size, and search area size than the raster-

scanning and clustering methods. Finally, outdoor field experiments are conducted using a team of custom-built aerial

robots equipped with gas concentration sensors to demonstrate efficacy of the DeMAIT algorithm to estimate and find the

source of a propane gas leak.
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1. Introduction

The Bhopal gas tragedy in 1984 was one of the worst

industrial chemical leaks in history. Over half a million

people were exposed to leaking methyl isocyanate gas

from a pesticide plant (Broughton, 2005). Recently, the

Aliso Canyon gas leak caused over 100,000 tonnes of

methane to be leaked into the atmosphere before it was

discovered and contained (Conley et al., 2016). In general,

the impact of such accidents can be minimized if the

source can be quickly detected, localized, and contained.

Despite advancements in chemical sensors that can detect

the presence of harmful substances, the process of pin-

pointing the location of the source and predicting the

extent of the contamination is difficult and can put human

responders in harm’s way (Dames et al., 2016; Hoffmann

and Tomlin, 2010; Kowadlo and Russell, 2008;

Lochmatter and Martinoli, 2009; Russell et al., 2003).

Deploying robots, such as aerial and ground robots,

equipped with sensors that can gather information and

make predictions about the state and extent of a leak can

help direct humans to safety, allocate resources for
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containment, minimize damage and environmental impact,

and reduce recovery cost and time. Herein, a new decen-

tralized multi-agent control algorithm for mobile robots

that leverages Bayesian estimation and information-

theoretic motion planning for efficient and accurate esti-

mation and localization of a target, such as a chemical gas

leak, is presented. The approach is validated through simu-

lations and outdoor experiments. The experiments involve

a small team of aerial robots (up to five) outfitted with

chemical gas concentration sensors deployed to autono-

mously search an area and estimate and localize the

source. Figure 1 shows a photograph from one of the

experiments conducted where the robot team successfully

estimated the location of a live propane gas leak.

State-of-the-art methods for information-theoretic-

based target estimation and localization primarily focus on

using a single agent or assume a central planner to coordi-

nate multiple robots, e.g., see the work by Hoffmann and

Tomlin (2010), Charrow et al. (2014a, b), Cliff et al.

(2018), Bayat et al. (2016), Hajieghrary et al. (2017),

Ryan and Hedrick (2010), Bourne and Leang (2017);

Bourne et al. (2019), Ristic et al. (2017), and Park and Oh

(2020). Centralized systems are often used even though

practical real-world implementation requires decentralized

estimation, planning, control, and collision avoidance

(Durrant-Whyte, 2006). In general, a decentralized system

is more modular, scalable, and has better robustness prop-

erties compared with a centralized system (Durrant-

Whyte, 2006). In a centralized system, a single belief dis-

tribution is only updated (Bayat et al., 2016; Bourne and

Leang, 2017; Bourne et al., 2019; Charrow et al., 2014b;

Hajieghrary et al., 2017; Hoffmann and Tomlin, 2010;

Hutchinson et al., 2018; Park and Oh, 2020; Ristic et al.,

2017; Vergassola et al., 2007). The majority of existing

methods also plan in a myopic sense (i.e., planning only

for one time-step ahead) (Bayat et al., 2016; Bourne and

Leang, 2017; Bourne et al., 2019; Hajieghrary et al., 2017;

Hoffmann and Tomlin, 2010; Hutchinson et al., 2018;

Park and Oh, 2020; Ristic et al., 2017; Vergassola et al.,

2007). In addition, prior works make simplifying assump-

tions (Bayat et al., 2016; Bourne and Leang, 2017;

Hajieghrary et al., 2017), for instance assuming a single-

mode belief distribution (Atanasov et al., 2015; Choi and

How, 2010; Grocholsky et al., 2003). In such cases, linear-

ization and Kalman filtering techniques are often used

even though nonlinearities and multi-modal probability

distributions are common in target-tracking problems

(Atanasov et al., 2015; Choi and How, 2010; Grocholsky

et al., 2003). Many approaches also assume some known

target states for simplicity, which affects information gain

(Bayat et al., 2016; Bourne and Leang, 2017; Hutchinson

et al., 2018; Park and Oh, 2020; Ristic et al., 2017). Many

do not consider imperfect communication (limited band-

width, range, and delays caused by hardware limitations

(Tse and Viswanath, 2005)), sensor or robot dynamics,

sporadic or intermittent observations (caused by turbu-

lence and complex mixing phenomena (Kowadlo and

Russell, 2008; Lochmatter and Martinoli, 2009; Russell

et al., 2003)), limited on-board computation, and collision

avoidance (both inter-agent and with other physical

obstructions). This work addresses the existing deficien-

cies in this area of research.

To advance the state of the art, a new decentralized

multi-agent information-theoretic (DeMAIT) control algo-

rithm for target estimation and localization is developed,

implemented, and its performance evaluated rigorously.

The framework for this new information method is

depicted in Figure 2, and the process consists of three

main components: (1) a non-parametric Bayesian estima-

tor, (2) an information-theoretic trajectory planner that

generates an ‘‘informative trajectory’’ for an agent to fol-

low, and (3) a motion controller and collision avoidance

algorithm to ensure that each agent follows its informative

trajectory as closely as possible in a safe manner. This

article describes the development of the new algorithm

and the performance of the algorithm is evaluated in simu-

lation and through physical experiments. Future work will

analyze, evaluate, and study the properties of the new

information metric, including the accuracy of the approxi-

mation and its efficiency.

For clarity, in this article the definition of a decentra-

lized system is adapted from Durrant-Whyte (2006).

Specifically, a decentralized system has no central node(s)

that an agent is required to communicate with for estima-

tion, data fusion, or decision making. Herein, all computa-

tions for estimation, motion planning, control, and

collision avoidance are performed on-board each agent

based on whatever information an agent receives. All pro-

cesses are designed to handle changes in the network

structure that may be caused by, for example, communica-

tion dropouts or obstructions limiting data transfer. In

Fig. 1. Photograph showing a team of five custom-built

chemical-sensing aerial robots working together to estimate and

localize a propane gas leak. Each robot carries gas sensors and

computational hardware to run the decentralized multi-agent

information-theoretic (DeMAIT) control algorithm in real-time.
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addition, the belief distributions are maintained on-board

each agent, and individual motion planning trajectories

and collision-avoidance actions are not shared with the rest

of the robot team. Data transmitted between agents only

include the agent’s position and velocity, chemical con-

centration measurements, and minimal belief information.

As shown in Figure 2, the estimator utilizes a Poisson-

based likelihood model, a rate-based measurement model,

and a first-order hysteresis sensor dynamics model. The

choice of the likelihood and measurement model is moti-

vated by prior works that have shown that this combination

yields robust results for sporadic measurements (Bayat

et al., 2016; Vergassola et al., 2007). The non-parametric-

based belief is updated recursively as on-board measure-

ments are obtained asynchronously and as data arrives

from other agents. Furthermore, the beliefs are prepro-

cessed using clustering techniques to reduce computational

complexity. Then, this approximate belief distribution

from the estimator is passed to the information-theoretic

trajectory planner. The planner generates an informative

trajectory, and by following the trajectory as closely as

possible, an agent on average will minimize the uncer-

tainty of its respective belief distribution and thus, enhance

its localization and estimation task. The planning process

also utilizes a new metric of information gain based on

pairwise distances (Kolchinsky and Tracey, 2017), and a

new formulation for the gradient of this objective function

is presented. It is pointed out that this objective function

has comparable computation complexity (O(n2
p), where np

is the number of particles) to prior information metrics,

and it can be more generally applied to non-Gaussian like-

lihood models (because the Kullback–Leibler divergence

has been solved for many likelihood models). In addition,

the new metric can encompass other information metrics

(kernel density estimation (Hall and Morton, 1993; Joe,

1989) and expected likelihood kernels (Jebara and Kondor,

2003; Jebara et al., 2004)). The informative trajectories,

when followed, minimize snap and time, and are dynami-

cally feasible in terms of meeting input constraints through

differential flatness properties. The trajectory planning is

accomplished in real-time on-board an agent through a

new two-step optimization process. Lastly, a cascade of

control loops for position and velocity, attitude, and angu-

lar velocity and a reciprocal collision-avoidance strategy

(Van Den Berg et al., 2011) are used to track the informa-

tive trajectory and avoid collisions with nearby agents and

obstacles, respectively. The collision-avoidance strategy

utilizes a new error-based method for setting the preferred

velocity to improve position tracking performance. Each

agent avoids collisions by using received state information

(position and velocity) from nearby agents. The new

collision-free trajectory has minimal affect on the original

informative trajectory generated by the planner.

The main contributions and novelty of this work are as

follows. First, the information-theoretic motion planner

incorporates, in a decentralized fashion, a new information

objective function and the gradient of this function is

determined analytically. The novelty is this metric can be

readily applied to a general mixture model, such as a

Poisson-based model, as illustrated in this article. Poisson-

based likelihood models are attractive for estimation

because they are able to capture the intermittency in the

measurement. Intermittent measurements are caused by

turbulence and complex mixing dynamics. In addition, the

Fig. 2. Block diagram of the DeMAIT algorithm consisting of (1) a non-parametric Bayesian estimator, (2) an information-theoretic

trajectory planner that generates ‘‘informative trajectories’’ �r(t) for the agent to follow, and (3) a motion controller and collision

avoidance algorithm to ensure that the agent follows the informative trajectory as closely as possible in a safe manner. Informative

waypoints are denoted by x�k, the optimal collision avoidance trajectory is denoted by Hr(t), the position and velocity states are

represented by xk and, respectively, the concentration measurement is zk , the prior distribution is denoted by p(a0), the posterior

including the latest measurement is given as p(ak�1jz0:k), the posterior is p(ak jz0:k), and the approximate belief distribution from

clustering is denoted by p(�ak jz0:k).
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Poisson-based likelihood model overcomes intermittency

that is characteristic of real dispersion transport (Ristic

et al., 2017; Vergassola et al., 2007). In addition, the new

information objective function has similar computation

complexity as prior objective functions, and thus dynamic

programming and multi-threading techniques can be used

for implementation. Second, a novel two-step optimization

process is described that generates continuous-time infor-

mative trajectories for a robot agent to follow. The first

step in this process creates informative waypoints using

the new information objective function and the second step

generates a continuous, time-optimal and dynamically fea-

sible trajectory through these waypoints. This two-step

approach: (a) reduces computation time (e.g., an agent

only needs to plan a trajectory for itself), (b) does not

restrict the planner to be myopic, (c) does not require

motion primitives, and (d) considers robot dynamics to

ensure that trajectories are achievable to minimize uncer-

tainty. Third, the inclusion of an optimal reciprocal

collision-avoidance (ORCA) algorithm and its new exten-

sion for position tracking while avoiding collisions, in the

context of multi-agent target estimation and localization,

is presented. Finally, the DeMAIT algorithm is validated

through extensive simulation studies with performance

comparisons between a traditional raster-scanning method

and a recently published coordinated Bayesian-based bio-

inspired method that involves clustering (Bourne et al.,

2019). Results from outdoor field experiments are also

presented for a team of custom-built aerial robots equipped

with gas concentration sensors to estimate and find the

source of a propane gas leak to demonstrate efficacy of the

approach.

2. Hypothesis

The main hypothesis is the information method (i.e., the

DeMAIT algorithm) outperforms the raster-scanning and

clustering methods. Specifically, the DeMAIT algorithm’s

average localization success rate will be: (a) higher than

the raster-scanning and clustering methods and (b) more

robust to changes in the source terms (i.e. source location,

size, and release direction), robot team size, and search

area size. The hypothesis will be tested through simulation

and outdoor experiments.

3. Information-theoretic control

Information-theoretic control (or active perception) is a

technique to move a sensor so that more informative obser-

vations are obtained to improve Bayesian estimation of an

unknown target of interest (Julian et al., 2012). This tech-

nique has been used in a wide range of applications, e.g.,

selecting favorable placement of static sensors (Cameron

and Durrant-Whyte, 1990), simultaneous localization and

mapping (SLAM) in GPS-denied environments (Atanasov

et al., 2015), estimating agent states in a multi-agent

system (Hausman et al., 2015), finding/tracking unknown

number of stationary and mobile targets (Dames and

Kumar, 2015; Dames et al., 2017; Grocholsky et al., 2003;

Ryan and Hedrick, 2010), generating 3D maps of an

unknown environment (e.g., in a cave) (Charrow et al.,

2015a, b ; Tabib et al., 2016), inferring the state of a forest

fire (Julian et al., 2012), tracking animal migration patterns

(Cliff et al., 2018), finding victims buried in a snow ava-

lanche (Bourne and Leang, 2019; Hoffmann and Tomlin,

2010), locating magnetic anomalies such as mineral depos-

its and bomb ordnance (Dames et al., 2016), tracking inva-

sive species such as algae, carp, and weeds (Clements

et al., 2014; Dunbabin and Marques, 2012; Tokekar et al.,

2013), estimating mass properties during cooperative lift-

ing tasks (Corah and Michael, 2017), maintaining object

visibility for visual servoing (Dame and Marchand, 2011),

modeling objects, e.g., for manipulator grasping (Denzler

and Brown, 2002; Kahn et al., 2015; Whaite and Ferrie,

1997), forecasting the weather (Choi and How, 2010), and

localizing a chemical (Bayat et al., 2017; Bourne and

Leang, 2017; Hajieghrary et al., 2017; Neumann et al.,

2013; Ristic et al., 2017), radioactive (Ristic et al., 2010),

radio (Charrow et al., 2014b), or acoustic source (Basiri

et al., 2018).

Published research on information-theoretic control has

focused on different types of targets, belief representa-

tions, information objective functions, motion planning

and control strategies, robotic platforms and sensors, and

communication and network structures. Early work began

in the 1990s when Cameron and Durrant-Whyte (1990)

used a Gaussian-based belief and mutual information to

help them place static sen sors in a network. Groups such

as Grocholsky et al. (2003), Choi and How (2010), and

Atanasov et al. (2015) continued with this idea by control-

ling robots equipped with sensors for tracking applications

to maximize mutual information of the Gaussian-based

belief. The work by Hoffmann and Tomlin (2010) used a

non-parametric formulation of mutual information to

guide multiple robots using different types of sensors.

Their approach formulated single-node (greedy) and

pairwise-node approximations to increase the scalability

of the process as the number of robots increases. They

used a centralized planner to constrain the robots to main-

tain a safe distance during operation. Research by Ryan

and Hedrick (2010) focused on planning for a single robot

over a receding horizon. Their approach is expected to be

beneficial for non-minimum phase robot dynamics and

can result in more informative plans compared with

greedy myopic methods. They also approximated mutual

information using a sampling-based algorithm for a

Gaussian mixture model and a Delaunay triangulation

over the belief distribution. Julian et al. (2012) and

Schwager et al. (2017) utilized an analytical expression

for the gradient of mutual information to guide their

robots. A consensus-based algorithm was used to approxi-

mate joint measurement probabilities. Charrow et al.

(2014a, b) utilized a zero-order Taylor series

1528 The International Journal of Robotics Research 39(13)



approximation of mutual information, which was devel-

oped by Huber et al. (2008), to coordinate multiple robots

over a finite time-step horizon. To reduce computation, a

grid-based down-sampling method was implemented to

lower the components of the non-parametric belief distri-

bution. Furthermore, the trajectories consisted of a finite

number of motion primitives obtained through a connec-

tivity graph and Delaunay triangulation for cell decompo-

sition of a known environment.

To specifically tackle the chemical source estimation

and localization problem, pioneering work took inspiration

from biological systems (Ishida et al., 1994). More

recently, work by Vergassola et al. (2007) was the first to

use information to optimally select discrete myopic

actions to guide robots. They called their approach info-

taxis. More recently, Ristic et al. (2017) combined non-

parametric distributions with analytical beliefs through

conjugate priors. Their approach moved a robot team,

which was in a circular formation, to minimize entropy.

Hajieghrary et al. (2017) used a non-parametric formula-

tion of mutual information introduced by Hoffmann and

Tomlin (2010), and they used Gaussian radial basis func-

tions and approximated the mutual information by a third-

order Taylor series similar to Charrow et al. (2014a) to

guide the agents. Hutchinson et al. (2018) optimized dis-

crete robot actions to maximize expected information gain

using a non-parametric formulation. Similarly, Park and

Oh (2020) optimized discrete robot actions and studied

various coordination strategies. Bayat et al. (2016) used

the Fisher information matrix to guide their robot over a

moving horizon. The work by Wiedemann et al. (2019)

utilized a model-based gas source localization strategy and

a information-theoretic approach to coordinate a multi-

robot system for multisource localization. Finally, the very

recent work by Bourne et al. (2019) leveraged bio-inspired

methods and coordination to optimize robot actions to rule

out modal hypotheses. The basic premise was that moving

to the source of a mode led to high information gain.

3.1. Advancements beyond the state of the art

First, the new information objective function and its analy-

tical gradient are more computationally efficient to com-

pute compared with prior metrics, where quadrature

techniques were used (Bourne and Leang, 2017; Hoffmann

and Tomlin, 2010; Ristic et al., 2017). Thus, this new

metric can be applied to non-parametric, multi-modal dis-

tributions as illustrated in this article. This is advantageous

because the resulting mutual information better represents

the distribution of information compared to simpler strate-

gies such as Kalman filtering. In fact, poor estimation is

possible when parametric techniques are applied to non-

linear problems (Hoffmann and Tomlin, 2010), and thus

should be avoided as much as possible.

In prior works that focus on chemical source localiza-

tion, the majority assume known information about certain

parameters including diffusivity, bulk wind speed and

direction, and particulate lifetime (Bayat et al., 2016;

Bourne and Leang, 2017; Hutchinson et al., 2018; Park

and Oh, 2020; Ristic et al., 2017). In practice, however,

these parameters are difficult to obtain and may require

additional sensors such as anemometers to obtain the

information. Likewise, prior efforts deal with simplified

models of targets (Charrow et al., 2014a, b; Cliff et al.,

2018; Hoffmann and Tomlin, 2010; Ryan and Hedrick,

2010). The DeMAIT algorithm, on the other hand, consid-

ers a more complete model with an eight-dimensional tar-

get state where information is acquired over the agent’s

state space. The algorithm estimates all parameters of the

measurement model and only assumes an initial prior

distribution.

Although earlier methods for localizing chemical-based

targets have been validated on experimental data sets, for

example from COANDA Research and Development

Corporation and the 2010 Deep Water Horizon Oil Spill

(Hajieghrary et al., 2017), the results offer limited insight

due the assumptions that were made and the Monte Carlo

simulations were applied to a specific a single contami-

nant data set (Bayat et al., 2016; Bourne et al., 2019;

Hutchinson et al., 2018; Park and Oh, 2020; Ristic et al.,

2017; Vergassola et al., 2007). Herein, the performance of

the DeMAIT algorithm is rigorously evaluated through

simulations for changes in the source location and size,

wind direction, search area size, and size of the robot

team.

Finally, results from realistic field experiments are

rarely shown, if at all, in the published literature. Such

experiments are difficult to perform because of the com-

plexity of the problem, coupled with the challenge of cre-

ating functional hardware, such as custom communication

hardware for inter-agent sharing of observations and state

information. In addition, chemical-release experiments are

challenging to perform due to safety concerns. This paper

presents results from outdoor field experiments of two rel-

atively challenging configurations to demonstrate the abil-

ity for an aerial robot team running the DeMAIT algorithm

to estimate and localize a live propane gas leak.

4. Technical details of the DeMAIT algorithm

4.1. Preliminaries

Throughout this article, bold letters or symbols, e.g., x and

a, denote vector quantities. The variable for continuous

time is t 2 R, where R is the set of real numbers. The

discrete-time space is denoted by T and the discrete-time

instant for a particular variable is indicated with subscript

k 2 T � Z+ , for example ak , where Z+ is the set of pos-

itive integers. Normally, the time duration D between two

consecutive time steps is constant. However, owing to lim-

ited communication bandwidth and/or intermittent trans-

mission of information, D can vary. The subscript notation

cn:k = ½cn,cn + 1, . . . ,ck�1,ck �, represents a variable c
at discrete-time instances between n and k. The

Bourne et al. 1529



decentralization process is developed and presented from

the perspective of a single robot agent (Franchi et al.,

2013), otherwise it will be stated explicitly.

4.2. Target estimation process

As shown in Figure 2 by the green solid-line box, a decen-

tralized non-parametric Bayesian-based estimator recur-

sively and asynchronously updates a belief distribution for

the source (target) terms. The source terms are denoted by

fai
k ,wi

kg, where ai
k = ½xs,Q, v, u,D, t� denotes the parti-

cles over the source terms (xs,Q, v, u,D, t; which are

explained in detail later), and wi
k denotes the weights of

the particles. In addition, i = 0, . . . , np denotes the number

of particles, with ai
k 2 A � R

na and wi
k 2 ½0, 1� such that

the
Pnp

i wi
k = 1. The source-term state space is denoted by

A and na denotes the cardinality of the set of real numbers

R. This belief formulation encompasses the source terms,

such as source location, wind direction, etc. In addition,

each agent maintains its own belief distribution and this

information is not transmitted between agents. To update

the decentralized belief distribution fai
k ,w

i
kg, a likelihood

model of the form p(zk jak , zk�1) is used, which incorpo-

rates the dynamics of the sensor, the maximum value of

the concentration measurement, the most recent joint

observations (on-board and data) zk 2Wk � R
nz

+ , and the

corresponding agent states xk = ½xk , yk , zk � 2 X � R
nx (on-

board and received data). The state-space of the joint

observations zk and the robot state space are denoted by

Wk and X, respectively. Furthermore, the Bayesian esti-

mation process initializes the belief with a prior over the

source term state-space A, updating the belief (likelihood

model), incorporating belief sharing between agents, pre-

dicting forward, resampling, and clustering. Finally, the

output of the Bayesian estimator is an approximate belief

distribution p(�ak jz0:k) for the down-sampled version of the

estimated source terms �ak . This approximate belief distri-

bution is used by the informative trajectory planner. The

details of each component of the estimator are described

next.

4.2.1. Non-parametric Bayesian estimation. Standard

Bayesian filters of the form,

p(ak jz0:k�1)=

Z
ak�1

p(ak jak�1)p(ak�1jz0:k�1)dak�1

p(ak jz0:k)=
p(zk jak)p(ak jz0:k�1)

p(zk jz0:k�1)

ð1Þ

use an assumed prior distribution p(a0) to make forward

prediction p(ak jak�1), and they update the belief distribu-

tion through the likelihood model p(zk jak), which results

in a posterior distribution p(ak jz0:k). However, such esti-

mators often become intractable to compute owing to the

complex integration process (Arulampalam et al., 2002).

Thus, a non-parametric formulation of the form

p(ak jz0:k)’
Xnp

i = 1

wi
kd(ak � ai

k) ð2Þ

is used, where d(�) is the Dirac delta function. Next, by

exploiting importance sampling and setting the proposal

distribution to the state transition p(ak jak�1), the particle

weights are recursively updated with

wi
k}wi

k�1p(zk jai
k) ð3Þ

Finally, the expected value of the posterior, maximum

likelihood estimates (MLEs), and multiple least likelihood

estimates (LLEs), respectively, are approximated by

âk =

Z
ak2A

akp(ak jz0:k)dak’
Xnp

i = 1

wi
kai

k ð4Þ

ak = argmax
ak

p(zk jak)’ay
k jy = argmax

i

wi
k ð5Þ

aj
k = argmin

ak

p(zk jak)’ay
k jy = argmin

i, j
wi

k ð6Þ

Note that aj
k denotes the jth LLE. It is emphasized that

the MLE and LLE are used for belief sharing between

agents as described in the following. In addition, the

approximate belief distribution denoted by �aj
k is gener-

ated through clustering (MacQueen, 1967; Zhou and

Sakane, 2008).

4.2.2. State-transition model. The state-transition model

for a stationary target (i.e., fixed chemical leak) is mod-

eled by a Gaussian random walk, i.e., p(ak jak�1)=
N (ak ; ak�1,S(u)). The covariance S is a function of the

wind direction u, e.g. ,

S(u)=
C(u) 02, 6

06, 2 diag(s~a)

" #

C(u)=R2(u)
sxs

0

0 sys

� �2

R2(u)
T

ð7Þ

where 0i, j denotes a zero matrix with i rows and j columns,

sxs
, sys

, and s~a = ½szs
,sQ,sv,su,sD,st� are the diagonal

components of the covariance matrix, and R2(u) is the

rotation matrix for angle of rotation u. Equation (7) is used

to predict and diversify particles according to the estimate

of the wind direction u.

4.2.3. Measurement model. A measurement model is used

to model the chemical plume behavior, where the

model captures the turbulent transport of particulates

and represents the rate of encounters rather than con-

centration as done in prior work (Bourne et al., 2019).

This approach was first introduced by Vergassola et al.

(2007) and is adopted here, and the measurement model

is given by
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ẑk(xk ,a)=
aQ

kxk � xsk2

exp � k xk � xsk2

l
+
(xk � xs)v

2D

� �� �
ð8Þ

where

l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt

1 + v2t
4s

s
ð9Þ

The variables a, Q, and xs = ½xs, ys, zs� denote the spherical

sensor radius, emission rate, and the source position,

respectively; and the output of the measurement model is

ẑk : X×A! R+ . It is noted that the height of the source,

zs, should not be confused with the observations, zk .

Specifically, the source terms a = ½xs,Q, v, u,D, t� also

include the bulk wind speed v, bulk wind direction u,

homogeneous diffusivity D, and particulate lifetime t. In

addition, the bulk wind direction u is incorporated into (8)

via the homogeneous transformation PT W from a world

frame W to a plume frame P (Bourne et al., 2019;

LaValle, 2006). Figure 3(a) illustrates the measurement

model given by (8). Figure 3 also shows two other models

used and the details are presented in the following.

4.2.4. Sensor dynamics model. The dynamics of chemical

concentration sensors are generally slow (He et al., 2019;

Hoffman, 2018), and thus the conditional independent

assumption, zk?zk�n, may not hold; therefore,

zr
k 6? zr

k�njn.1 and zr
k?zi

k�n, 8r 6¼ i are assumed for n

number of time steps, where the superscripts r and i

denote a specific robot.

The dynamics of some chemical gas sensors are also

hysteretic, with different rise and recovery dynamics.

Taking all this into account, the following first-order

approximation (He et al., 2019; Hoffman, 2018)

Z(s)

Ẑ(s)
=

e

es + 1
, e =

erise _̂z(t).0

erec _̂z(t)ł 0

�
ð10Þ

is used to model the behavior of the chemical gas concen-

tration sensor. In (10), Z(s) represents the Laplace trans-

form of the sensor output for a given input Ẑ(s), and e

=½erise, erec� are time constants for rise and recovery

dynamics, respectively (He et al., 2019; Hoffman, 2018).

Discretizing (10) leads to

^̂zk(xk ,ak , zk�1)= ẑk(xk ,ak)+ zk�1 exp �
D

e

� �

e =
erise ẑk.zk�1

erec ẑk ł zk�1

� ð11Þ

where ^̂zk denotes the predicted concentration measurement

of the sensor (including sensor dynamics), ẑk is calculated

using (8), and zk�1 is the previous concentration measure-

ment (observation).

4.2.5. Likelihood model. The likelihood model fuses all

available information, including sensor observations (e.g.,

from on-board sensors), observations from other robots,

and the location of where the maximum concentration

measurement is obtained. To this end, the combined likeli-

hood model is

p(zk jzk�1,ai
k)=N (xk ; xi

s, diag(g))
Yr\jWk j

r

P zr
k

� 	
;
1

fs

^̂zk(x
r
k ,a

i
k , z

r
k�1)

� � ð12Þ

where the position of the maximum concentration obser-

vation is computed by xk = xr�
k� j½k�, r��= argmaxk, r(z

r
k), g

is the diagonal components of the covariance matrix

diag(g), P(k; m)= mk exp (�m)
k! is the Poisson distribution,

where �d e denotes the ceiling operator, fs is the sampling

frequency of the sensor, and r represents an increment

variable describing the latest information received from

the agent’s sensors and other agents’ observations. It is

important to note that fs changes with respect to the type

of sensor used. Although not shown explicitly, the product

operation in (12) is performed only over the available

number of observations, denoted by the cardinality of the

observation space jWk j.

4.2.6. Resampling process. To refocus the non-parametric

belief distribution fai
k ,w

i
kg onto likely portions of the

source-term state-space A, a systematic resampling

Fig. 3. Plume models used in simulation experiments: (a) rate

model defined by (8), also showing starting locations of agents

for simulations and physical experiments, (b) rate model with an

independent identically distributed (i.i.d.) Poisson distribution

sampling, and (c) plume generated by the GADEN package

(Monroy et al., 2017).
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process is used. Specifically, when particles become

degenerate as defined by

1Pnp

i (wi
k)

2
ł

np

2
ð13Þ

then the systematic resampler is applied. Systematic

resampling has low variance and linear complexity O(np)
(Arulampalam et al., 2002).

4.2.7 Belief sharing. Belief sharing between agents is

employed to communicate likely estimates across the

team. Belief sharing is used sparingly, and the process

considers the available communication bandwidth, amount

of data needed to be shared, etc. This procedure is also

useful when decentralized beliefs drastically differ and

when prior distributions are different or have finite sup-

port. Belief sharing is achieved by replacing LLE particles

with the MLE particles from the other robots using the

expression

aj
k : = ak

r ð14Þ

In particular, this equation is used to replace the jth LLE

with the MLE from the rth robot. Belief sharing allots the

MLEs from all the belief distributions of all robots by

replacing the LLE.

4.2.8. Approximating the posterior. To reduce the compu-

tation time required to evaluate mutual information, a K-

means clustering approach (MacQueen, 1967) is employed

to reduce the number of particles from np to ncp. A similar

method as described by Charrow et al. (2014a) was applied

to a fixed grid to down-sample the particles by taking the

average of the particles that exist within a particular cell.

In that work, the researchers showed that for a Gaussian

mixture model, their approximation does not introduce

error in calculating mutual information. Although this arti-

cle forgoes rigorous proof and leaves this as future work, it

is believed that the cluster-based approximation does not

introduce significant error in the calculation of mutual

information, especially when the belief distribution

becomes more compressed and is clustered (Kolchinsky

and Tracey, 2017).

4.2.9. Implementation details. Each agent executes on-

board the DeMAIT algorithm outlined in Figure 2 and

belief sharing is accomplished in a decentralized fashion

as described previously. As a result, each agent maintains

its own belief distribution. Furthermore, owing to limited

communication, the cardinality of the observation space

jWk j changes with time. This should not be confused with

the upper bound of the cardinality of the observation space

nz, because the size of the joint observation zk can vary

due to communication delays or dropouts. Consequently,

the number of multiplications within the product of the

likelihood model (12) may vary.

Each robot carries two chemical sensors, a metal-oxide

(MOX) sensor and the newly developed NevadaNano

MEMS-based Molecular Property SpectrometerTM

(MPSTM) (He et al., 2019). MOX sensors have slow

dynamics (i.e., time constants can reach up to 60 seconds

(Szulczyński and Gà̀bicki, 2017)). In addition, MOX sen-

sors require a warm-up process and calibration (He et al.,

2019). Please see He et al. (2019) for details regarding the

MOX sensor calibration. During the experiments, the

MOX sensors were given a 5-minute period to warm-up

the sensor. If the temperature of the sensor was measured,

then this effect could have been compensated for using a

similar approach to compensate for the sensor dynamics

(Abidin, 2013). On the other hand, the MPS sensor is

faster with a response time of 2 seconds, but the data out-

put rate only occurs once every 2 seconds, thus at discrete

time instances. In the likelihood model given by (12), the

two sensor outputs on-board the agent and all available

received data (i.e., observations) are fused together.

Received data contain other agents’ sensor type, time

stamp, and the location when a particular observation is

made.

4.3. Informative trajectory planning process

The informative trajectory planner shown in Figure 2 by

the components in the red dashed-line box generates infor-

mative trajectories �r(t) for an agent to follow. This

involves two steps. The first step uses the approximate

belief distribution p(�ak jz0:k) and the new metric for mutual

information (see (16)) to optimally select TR-number (the

product of R-sized robot team and the time-step horizon

T 2 T � Z+ ) of informative waypoints x�k. The indices

for the future time-steps are denoted by k = k + 1 : k + T ,

for example ck = ½ck + 1,ck + 2, . . . ,ck + T �. The second

step generates an optimal dynamically feasible and mini-

mum- and continuous-time polynomial-based trajectory

through the informative waypoints x�, rk associated with

each robot agent. Thus, an agent only plans a trajectory for

itself. This trajectory is denoted by �r(t) 2 R
4, where

single-dimensional polynomial trajectories are defined as
�r(t)=

PN
i = 0 cit

i, and c(�) are the coefficients. It is noted

that the fourth dimension determines the yaw orientation

of the agent and this orientation is fixed. Finally, replan-

ning the informative trajectories is conducted at a fixed

frequency fp and this process incorporates the previous

informative trajectory’s differential constraints to yield

smooth transitions between the trajectories. It is empha-

sized that this process does not require transmitting infor-

mative trajectories between agents. Furthermore, while

robots are navigating along their respective informative

trajectories, the particle filter updates when data from on-

board measurements and the data from other agents are

collected (which occur according to the sensor sample fre-

quency, see He et al. (2019) for details regarding the
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sensors). The details of the planner are presented next,

where first a new method to approximate the mutual infor-

mation and its gradient are described.

4.3.1. Approximating mutual information and its

gradient. An expression for the mutual information

I½zk(xk); akjz0:k � of a mixture model (Charrow et al.,

2014a), which is made up of mixture components taking

the form of the likelihood model, is developed to quantify

information gain. Typically, incorporating the likelihood

model given by (12) would result in a non-casual process

(i.e., requiring future observations). Instead, the following

simplified likelihood model is considered, i.e., the Poisson

distribution without sensor dynamics,

p(zr
k(x

r
k)j�a

i
k)=P( zr

k

� 	
; ẑ(xr

k , �ai
k)) ð15Þ

Because this simplified likelihood model is used for plan-

ning, mutual information must be calculated for a

Poisson mixture model, where mixture components are

made up of (15).

It is well known that there is no analytical method for

calculating entropy of mixture distributions (Huber et al.,

2008); thus approximations of mutual information

I½zk(xk); akjz0:k � must be made. A new family of approxi-

mations for mutual information based on pairwise dis-

tances (Kolchinsky and Tracey, 2017) is adopted here,

that takes the form

I½zk(xk); akjz0:k �’�
Pncp

i

wi ln
Pncp

j

wj exp (�D(pi k pj))

pi =
Qk + T

i = k + 1

QR
r = 1

p(zr
i (x

r
i )j�a

i
i)

ð16Þ

where D(pi k pj) denotes a pairwise-distance function

between probability density functions pi and pj. In this

case, pi and pj are Poisson mixture components. More for-

mally, D(pi k pj) is a premetric, and thus is non-negative

and only equal to zero when pi = pj. In addition, pi and pj

assume that zk + i?zk + jj8i 6¼ j and 0\i, j\T . This expres-

sion for information gain is efficient to compute and

becomes exact when the mixture components are well

clustered (Kolchinsky and Tracey, 2017). The use of this

type of metric for information-theoretic control is new and

one of the main contributions of this article to enable

implementation of the information-theoretic approach for

general likelihood models (such as Poisson distributions).

Many applicable premetrics exist, including Kullback–

Leibler divergence, Rènyi divergence, Chernoff a-diver-

gence, to name a few (Cover and Thomas, 2006; Ullah,

1996). Furthermore, likelihood–premetric pairs often result

in simple closed-form expressions, which are beneficial

over a common approximation approach as described by

Huber et al. (2008), which require Taylor series approxi-

mations. Herein, D(pi k pj) is chosen to be the Kullback–

Leibler divergence (DKL(pi k pj)) for its simple analytical

form of a Poisson distribution and its additive properties

for independent distributions. Thus, the approximate

mutual information (16) becomes

I½zk(xk); akjz0:k �’�
Xncp

i

wi ln
Xncp

j

wjei, j

 ! !
ð17Þ

where ei, j = exp �
Pk + T

i = k + 1

PR
r = 1DKL(p

r
i, i k pr

j, i)

 �

.

Next, applying the rules of differentiation and taking

the partial derivative of the approximate mutual informa-

tion given by (17) with respect to the state of the robot xk

�¼fxk, yk, zkg at a single future time-step k �¼ k, the fol-

lowing can be shown:

∂I½zk(xk); akjz0:k �
∂xk

’

Pncp

i wi

Pncp

j wjei, j

Pk + T
i = k + 1

PR
r = 1

∂DKL(p
r
i, i
kpr

j, i
)

∂xkPncp

j wjei, j

ð18Þ

rI½zk(xk); akjz0:k �’½rIk + 1,rIk + 2, . . . ,rIk + T � ð19Þ

where ei, j is as defined previously. It is noted that

pr
i, i = p(zr

i (x
r
i )j�a

i
i), Ik + 1 = I½zk + 1(xk + 1); ak + 1jz0:k �, andr

denotes the gradient operator with respect to fxk, yk, zkg.
This analytical result for the gradient of the approximate

mutual information is new and is useful for the optimiza-

tion process (Zingg et al., 2008), motion planning (Julian

et al., 2012), and is efficiently computed by caching simi-

lar terms in (17).

Although the Kullback–Leibler divergence is used in

(18), in general any divergence-based measure can be

used. The specific form of
∂DKLðpr

i;ikpr
j;iÞ

∂xk
is dependent on the

specific likelihood model considered. Hence, for a univari-

ate Poisson likelihood model,

∂DKLðpr
i;i k pr

j;iÞ
∂xk

=
∂pr

j;i

∂xk

1�
pr

i;i

pr
j;i

 !
+

∂pr
i;i

∂xk

ln
pr

i;i

pr
j;i

 !

ð20Þ

For a univariate Gaussian likelihood model with a constant

covariance S,

∂DKLðpr
i;i k pr

j;iÞ
∂xk

=

∂pr
i;i

∂xk
� ∂pr

j;i

∂xk


 �
pr

i;i � pr
j;i


 �
S

2
ð21Þ

Finally, the gradient of the mutual information given by

(18) requires that the measurement model be differentiable

with respect to xk, which is often the case for target track-

ing problems.

4.3.2. Examples of mutual information and its

gradient. As an example to illustrate how information

varies spatially for different belief configurations and for
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several sensing modalities including a chemical concentra-

tion sensor, Figure 4 plots the results of (17) and (18).

Figure 4(a1) illustrates how mutual information varies

spatially for a belief distribution consisting of two parti-

cles, a bearing sensor (see Hoffmann and Tomlin, 2010 for

details), and a Gaussian-based likelihood model. It is read-

ily apparent that there is low information in the top-right

and bottom-left corners of the search area indicated by the

blue-colored distribution. These low-information areas

exist because observing from these corners would lead to

similar observations for both particles, thus an agent would

not be able to distinguish which particle is more accurate

(assuming the unknown target is close to one of the parti-

cles). A similar result can be concluded for a range-based

sensor as illustrated in Figure 4(b1). In this case, the spatial

distribution of information is different because of the new

measurement model. Now, low-information areas yield

Voronoi-like diagrams between particles. Hence, observa-

tions from areas of low information would not allow an

agent to distinguish which particle is more informative.

Lastly, Figure 4(c1) shows how information varies spa-

tially for a chemical sensor and a Poisson-based likelihood

model. Clearly, over the same area there is less available

information (i.e., smaller red-shaded regions) and more

complex local extrema, which make the optimization and

motion planning processes more challenging. Furthermore,

the measurement model for a chemical sensor has many

more parameters and these parameters can significantly

affect the overall distribution of information. To avoid this,

it is believed that prior works have simplified the measure-

ment model by assuming some fixed parameters in order

to reduce computational complexity in calculating mutual

information. Instead, in this article, the new mutual infor-

mation metric given by (17) and its analytical gradient

given by (18) are used and expected to be able to handle

more complex measurements model without assuming

fixed parameters or reducing the source term state-space.

These advantages can be leveraged for efficient and effec-

tive target localization.

Changing the belief distribution drastically changes how

information is distributed as shown in Figure 4(a2)–(c2). For

example, Figure 4(c2) consists of a four particle distribution

placed at (50, 50) and with different cardinal directions. The

information contours result in higher-information areas along

the cardinal directions; however, they have complex distribu-

tions near (50, 50). Finally, Figure 4(a3)–(c3) plot the gradi-

ent of the new mutual information objective function, given

by (18), as illustrative examples.

4.3.3. Multi-threading for fast computation. Multi-thread-

ing is used to efficiently calculate (17) and (18).

Specifically, the summation of the form

XI

i = 0

Fi =
XY�1

k = 0

Xi\ k + 1
Y

Ib c

i = k
Y

Ib c
Fi ð22Þ

with Y threads (assuming the total number summation ele-

ments I is even), is applied to (17) and (18). For example,

Fi = wi ln
P

j wj exp (�
P

t

P
r DKL(pi k pj)), with I = ncp

and Y = 4.

Next, using dynamic programming techniques, the

computation speed of calculating the mutual information

metrics is increased by caching the Poisson elements pr
j, i

during the first iteration of the most outer summation of

(17) (i.e., when i = 1). More specifically, when calculating

(17) and i = 1, pr
j, i, 8j is stored in memory. Then, the ith

and jth summation components take advantage of the

cached Poisson elements. In practice, taking advantage of

multi-threading and caching strategies can increase the

calculation speed for mutual information by an order of

magnitude.

Next, the new two-step process to generate informative

trajectory �r(t) is described in the following, and the pro-

cess begins with generating the informative waypoints x�k
as follows.

4.3.4. Step 1: Generating informative waypoints. To opti-

mally determine informative waypoints x�k, the mutual

information I½zk(xk); akjz0:k � is used as follows

x�k = argmax
xk

I½zk(xk); akjz0:k � � lD(xk) ð23Þ

where xk 2
QTR

X and D(xk) discounts information far

away (see the work by Stachniss et al., 2005), and l is a

Fig. 4. Examples of the spatial distribution of mutual

information and its gradient, given by (17) and (18),

respectively, for (a1)–(a3) a bearing sensor, (b1)–(b3) a range

sensor, and (c1)–(c3) a chemical concentration sensor.
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weighting constant. Equation (23) is solved using a non-

linear optimization routine within the NLopt library

(Steven, 2020). Furthermore, the gradient of information,

(18), is used within the optimization routine to increase

the efficiency. Finally, waypoints are ordered, thus way-

point assignment to robots is not required and is implicit

within the optimization routine. The initial guess of the

waypoints, xk, is equal to the closest particle for each

time-step.

4.3.5. Step 2: Trajectory planning. The informative way-

points x�k generated by Step 1 are used to generate a feasi-

ble and minimum- and continuous-time trajectory �r(t).
This step leverages the techniques described by Richter

et al. (2016), Burri et al. (2015), and Mueller et al. (2015).

The work by Richter et al. (2016), Burri et al. (2015),

and Mueller et al. (2015) focused on generating a single

trajectory through an obstacle-filled environment using a

graph-search method to initialize a path through the envi-

ronment. They assumed the obstacles were static, thus an

iterative planning process was also used to ensure a

collision-free trajectory is generated. In contrast, this work

uses informative waypoints to form constraints for the tra-

jectory generation process. In addition, nearby agents are

treated as dynamic obstacles, thus collision avoidance is

reactive and performed in real-time. To this end, the pro-

posed approach handles collision avoidance in the control

loop. Finally, informative trajectories are sequentially gen-

erated as the belief distribution updates and replanning uti-

lizes the previous trajectory to form differential constraints

to produce smooth transitions between plans.

The trajectory optimization process finds T piecewise,

10th-order polynomial segments in three dimensions. The

goal of the trajectory optimization is to find coefficients c

that minimize the cost. Then, the resulting optimal trajec-

tory, denoted by �r(t), minimizes snap and time and con-

siders feasibility-related terms through the cost function

J =
XT

i

X3

d

Z T i

0

(rd
i (t)

(4))2dt + kt

XT

i = 1

T i + Jfeasible ð24Þ

where rd(4)

i (t) denotes the fourth derivative of the ith seg-

ment of the polynomial trajectory in the d dimension. The

term kt weights the time-related cost and T i denotes the

total time of the ith segment. The snap-related term in

(24) is formulated into a quadratic form (for a single

dimension).

The last term Jfeasible in (24) penalizes trajectories

that exceed specified feasibility constraints (see Richter

et al. (2016), Burri et al. (2015), and Mueller et al. (2015)

for more details). This process is accomplished by using

the equations of motion for a quadcopter aerial vehicle,

given by

€x(t)=R3ezf (t)+ g ð25Þ

where R3 is a orthogonal rotation matrix, ez = ½0, 0, 1�T is

a basis, f (t) is thrust, and g= ½0, 0, � 9:8�T is the gravity

term. In the end, the required thrust is found by taking the

Euclidean norm of (25), i.e., f (t)= k�€r(t)� gk2, subject to

max
t2½0, T �

f (t)2\f 2
max ð26Þ

for feasibility, where the upper bound fmax is specified.

The polynomial-based representation is beneficial here

because analytic solutions are formulated for fast feasibil-

ity calculations.

Lastly, the trajectory optimization is subjected to equal-

ity constraints that match derivatives at the start and end

of each piecewise polynomial segment and differential

constraints with respect to the previous informative trajec-

tory to ensure seamless planning between planning phases.

Equality constraints are formulated using a mapping

matrix between polynomial coefficients and derivatives,

and they take on the form

di, start

di, end

� �
=

Ai(t = 0)
Ai(t = T i)

� �
ci ð27Þ

where Ai is the mapping matrix, di is a vector of the deri-

vatives at the start and end of the polynomial segment,

and i corresponds to the specific segment. For example, to

ensure continuity between polynomial segments all deriva-

tives must match at the transition point between segments,

which is achieved through

Ai(t = T i)½ �ci = Ai + 1(t = 0)½ �ci + 1 ð28Þ

Finally, the time required to generate a trajectory is

recorded and used to project forward in time the deriva-

tives of the previous trajectory as initial constraints for the

next trajectory. In this way, the agent can continue

smoothly transitioning between informative trajectories.

As a final step, all constraints are stacked to form a set of

equality constraints for optimization. For more informa-

tion about trajectory optimization and state and input fea-

sibility using differential flatness properties, refer to the

work by Richter et al. (2016), Burri et al. (2015), and

Mueller et al. (2015).

To reduce computational load, only the informative

waypoints associated with a particular agent is used to

generate a trajectory. Thus, an agent only plans a trajec-

tory for itself. Therefore, the decentralized nature of Step

2 does not require transmission of the trajectories between

agents.

4.4. Collision-avoidance process and control

Lastly, the control and collision-avoidance process, as

shown in Figure 2 by the blue dotted-line box, focuses on

safely tracking the desired informative trajectory �r(t).
This process exploits the ORCA strategy (Van Den Berg

et al., 2011) to minimally alter, with respect to the original
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trajectory, the position and velocity trajectories to avoid

collisions. The altered trajectory is denoted by Hr(t). This

approach was chosen because it selects new velocities to

avoid collisions that has minimal affect on the original tra-

jectory. This is desirable because the original trajectory

satisfies feasibility constraints and is an informative path.

It is pointed out that following the altered informative tra-

jectory, Hr(t), may be sub-optimal in an information-

gaining sense, but it is safe and allows agents to continue

to gather information. The main difference between the

proposed approach and the method described by Van Den

Berg et al. (2011) is a new error-based method for setting

the preferred velocity is used to improve position tracking

performance.

To ensure decentralization, each agent computes

ORCA-based corrections using the received data about

other agents’ position xr
k and velocity vr

k (see Figure 2).

The modified collision avoidance algorithm is given by

H _rr = argminv2ORCA
h
r
k v� v̂

rk2 ð29Þ
Hrr = xr + H _rrDt ð30Þ

v̂
r
= cp(

�rr � xr)+ cv
� _rr ð31Þ

where the set ORCAh
r describes the set of permitted velo-

cities for the rth robot that guarantees that the robots are

collision-free with respect to all robots for at least h time

(Van Den Berg et al., 2011). Robots are assumed to be

spherical and, thus, the radius must be known before hand.

Furthermore, �rr and Hrr denote the optimal trajectories

for the rth robot before and after ORCA algorithm, respec-

tively. The parameter Dt denotes the time-step duration of

collision avoidance, v̂
r

is the new preferred velocity that

incorporates the desired position and velocity from the

original trajectory, and lastly, cp and cv are weighting con-

stants. This formulation helps to reduce position tracking

error while also avoiding collisions.

To follow the safe informative trajectory Hr(t), cascad-

ing control loops of position, velocity, attitude, and angu-

lar velocity are used. More specifically, control actions

include feedforward acceleration trajectories, gravity com-

pensation, feedback terms, and collision avoidance maneu-

vers. In addition, the proposed controller combines

feedback terms that considers the trajectory and feed-

forward terms using the differential flatness properties for

quadcopters (Mellinger and Kumar, 2011). Specifically,

the desired thrust is computed by

Fdes = � Kp(x�Hrr)� Kv(v�H _rr)+ mgez + m�€rr ð32Þ

where Kp and Kv are controller gains and m is the mass of

an agent. To get local position, height estimates are used

and GPS coordinates are converted to Earth-centered

Earth-fixed (ECEF) coordinates, and then to East–North–

Up (ENU) coordinates (Zhu, 1994). Equation (32) follows

the desired position Hrr and velocity H _rr after the

collision-avoidance strategy. Owing to ORCA’s velocity-

based formulation, the acceleration feedforward term �€rr

in (32) does not consider collision avoidance.

Equation (32) is then used to find a desired attitude

through differential flatness properties (Mellinger and

Kumar, 2011). The proposed approach utilizes a

quaternion-based controller to compute the desired angular

rates (Odes), which takes the form (Brescianini et al.,

2013; Faessler et al., 2017)

Odes(q)=
2

tc

sgn(qe, 0)qe, 1:3 ð33Þ

where qe represents the quaternion error and tc is a first-

order system time constant. Lastly, a proportional, integral,

and derivative (PID) controller is used to control the angu-

lar rates of the aerial robot.

5. Experiments, results, and discussions

Simulation and physical outdoor experiments were con-

ducted to better understand and quantify the performance

of the DeMAIT algorithm (i.e., information method), and

to test the main hypothesis. The details of the experiments

and results are presented in the following.

5.1. Details of the experimental setup

The experiments involve custom-designed quadcopter aer-

ial robot agents, and owing to cost constraints and practical

development and implementation challenges, up to five

robots were used in the simulations and physical experi-

ments. At the start of each trial for the search process, the

starting positions for the robot agents are at the lower left-

hand corner of the search area as illustrated in Figure 3(a).

For the simulation studies, the dynamics models of each

aerial-robot agent, given by (25), and the chemical sensor,

given by (11), were implemented in Gazebo (see http://

px4.io) and the Robot Operating System (ROS; Quigley

et al., 2009). The resources at the University of Utah’s

Center for High-Performance Computing (CHPC) facility

was used to run the simulations. Simulations were run in a

parallel fashion using singularity containers to reduce time

(Kurtzer et al., 2017). The computational nodes were run

under the Lonepeak and Notchpeak clusters, which are

made up of Intel Xeon X5650 2.67 GHz, E7-2850 2.00

GHz, L5640 2.27 GHz, or L5520 2.27 GHz CPUs. Lastly,

each simulation script consisted of two nodes.

For the physical outdoor experiments, the details of the

custom-designed robot platforms and chemical sensors are

summarized in the following, and for reference, the full

details of the robot design for autonomous chemical sen-

sing and mapping are described in He et al. (2019).

Two plume models were used in the simulation, a rate-

based model with Poisson-distributed noise and a

GADEN-generated plume (Monroy et al., 2017), as sum-

marized in Figure 3. The values for the parameters of the

GADEN plume are given in Table 1. It is noted that other

1536 The International Journal of Robotics Research 39(13)
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plume models can be used, for example, the Quick Urban

and Industrial Complex (QUIC) plume model (Bourne

et al., 2019; Brown et al., 2013; Singh et al., 2008, 2011;

Williams et al., 2004).

The search area of interest for the simulation varied

between 50 m × 50 m to 150 m × 150 m. After analyz-

ing the simulation results, the search area for the physical

outdoor experiments were chosen as 50 m × 50 m. This

choice was motivated by practical considerations of creat-

ing a live propane gas leak such that the experiments could

be conducted safely, and it was also deemed sufficient to

demonstrate the basic behavior of the algorithm over the

allowable flight time of the vehicles. Because quadcopters

have a limited flight time between 15 and 30 minutes, each

simulation was designed to allow the robots to search for

up to 15 minutes.

In order to benchmark the performance of the informa-

tion method (i.e., the DeMAIT algorithm), two other meth-

ods were also simulated and compared. The first is a basic

nave method of scanning the search area (He et al., 2019),

collecting concentration measurements, and using the mea-

surements in the estimation process. This approach is

referred to as the ‘‘raster-scanning method.’’ The raster-

scanning approach splits up the search area evenly and

assigns each sub-area to a robot. The robot then raster-

scans their respective area with a total of eight passes. The

second method, called the ‘‘clustering method,’’ is a multi-

agent bio-inspired Bayesian-estimation process where mul-

tiple agents coordinate their actions by clustering the belief

distribution according to the robot team size. Then, robots

use bio-inspired actions to investigate their specific cluster

assignment to estimate and localize the source. The clus-

tering method was recently published and is considered to

be one of the state-of-the-art methods for comparison

(Bourne et al., 2019). For the simulation studies, over

7,500 trials were conducted.

5.2. Simulation results and discussion

The primary goal of the simulation study is to test the

hypothesis that the information method (DeMAIT

algorithm) outperforms the raster-scanning and clustering

methods. In terms of localization success, the metric for

success is defined as when the estimation error ea and the

standard deviation of the estimate sstd are respectively

within the following bounds:

ea = k atrue, xs
� âk, xs

k\5m ð34Þ
k sstd k\5m ð35Þ

The localization success rate is determined with respect to

variations in source configuration, search area size, and

size of the robot team.

Table 2 summarizes the details of the test cases consid-

ered. First, all three methods were tested with a rate-based

plume source placed at (a) the center of the search area

and at (b) an off-center location (35 m, 20 m, 2.5 m).

Second, how well the performance scales with (c) the

number of robots and (d) the size of the search area is

investigated for the same type of plume source. Third, the

performance for (e) randomized rate-based source terms is

also studied. Finally, the performance for the GADEN-

generated plume is presented for scenarios (a), (b), (c), and

(d) to further validate the performance of the DeMAIT

algorithm. The GADEN-generated plume, although more

computationally complex, is a more realistic model for a

chemical gas plume and is used to highlight the effective-

ness of the DeMAIT algorithm. See the video provided as

Extension 1, which shows an example of a simulation of

the search process involving five robots and the rate-based

and GADEN-based source.

(a) Center placement and (b) off-center placement results.

This study investigates the localization success rate and

how robust the performance is to variations with respect

to two different source configurations (see details in

Table 2(a) and (b)).

In this study, 100 trials for each of the three methods

were run with a rate-based chemical source placed at the

center of a 50 m × 50 m search area. Likewise, 100 trials

for each method were run for the same type of source

placed off-center in the same search area. For all trials,

five robots began their search near the lower left-hand cor-

ner of the search area (see Figure 3(a)).

From the simulation results shown in Figure 5(a1), (b1)

and (c1), it is readily apparent that the raster-scanning,

clustering, and information methods were deemed suc-

cessful at localizing the source. However, the DeMAIT

algorithm consistently took less time to localize the source

compared with the other two methods (see Figure 5(a1),

(b1), and (c1)). For example, to achieve 80% success rate

for the off-center placement test case, the DeMAIT algo-

rithm ran approximately 50% faster than the raster-

scanning and clustering approaches. In addition, as shown

in Figure 5(a2), (b2), and (c2), the uncertainty for the

information method, the DeMAIT algorithm, decays faster

and overall has a tighter bound near the end of the run

compared with the other two methods. The reason for this

is the DeMAIT algorithm actively moves and guides the

Table 1. Parameter values for the GADEN-plume simulation.

Parameter Description Value

DTg Time step for plume updates 0.5 s
F s Number of filaments

release each second
20 filaments/s

F c Concentration at center
of filament

75 ppm

Fs Initial shape of filament 5 cm
gg Growth ratio of Fs 1 cm/s2

FR Additive white noise 0.25 m
T p Temperature 298 K
P Pressure 1 Atm
xgs GADEN source location (50, 45, 2.5) m
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agents using mutual information to reduce uncertainty in

the belief distribution, therefore allowing the bounds on

the standard deviation to reduced more quickly and be

lower overall. This suggests that the DeMAIT algorithm’s

average localization success rate is more robust to changes

in the placement of the source, therefore validating

hypothesis (b).

As shown by the box plots in Figure 5(a3), (b3), and

(c3), the location of the source can have an effect on the

performance. This effect is more significant for the raster-

scanning and clustering method. It is also interesting to

note that for the raster-scanning method, the distribution of

the performance is larger for the off-centered placement of

the source compared with the other two methods. In con-

clusion, these results show that on average the DeMAIT

algorithm’s localization success rate is higher than the

other two methods, thus it outperforms the other two meth-

ods and validates hypothesis (a).

As expected, in Figure 6(a), performance differences

between the raster-scanning and information methods are

not as significant as between the clustering and informa-

tion methods. Furthermore, the box plots in Figure 6(a)

show consistently higher localization success rate for the

DeMAIT algorithm when compared with the raster-

scanning and clustering methods.

In summary, for the two configurations tested, the

results supports the main hypothesis that the DeMAIT

algorithm outperforms the raster-scanning and clustering

methods.

(c) Effect of robot team size. This study investigates the

effect of robot team size (see details in Table 2(c)). Here,

robot teams consisted of 1, 2, 3, 4, and 5 agents, and for

each method and team size, 100 trials were run. In total,

1,500 simulations were conducted. The rate-based chemi-

cal source was placed at the center of a 100 m × 100 m

search area for each case. The starting location for the

robots is the same as the previous study.

As expected, the average localization success rate as a

function of time depends on the number of robots used for

all methods (see Figure 7). Clearly, for smaller teams the

DeMAIT algorithm yields better success rate compared

with the other two methods (see Figure 7(a1), (b1), and

(c1) black, red, and green lines and Figure 7(a2), (b2), and

(c2)).

Owing to the scanning process (with fixed scanning

resolution), the raster-scanning method’s performance is

consistently low for lower number of robots and changes

drastically between four and five robots (see Figure 7(a1)

and (a2)). Thus, the raster-scanning method has low aver-

age success rate and is not robust with respect to the num-

ber of robots used.

Interestingly, the clustering method’s localization suc-

cess rate yields inconsistent trends as the number of robots

increase (success rate changes are not monotonic in the

number of robots; see Figure 7(b1) and (b2)). This result,

as well as the low performance for smaller team sizes, is

due to the limitations of the coordination strategy.T
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Specifically, when no observations are made, the cluster-

ing method tends to divide the area into separate regions

for investigation. In doing so with a center-placed source,

and a team with four robots, one robot will consistently

navigate across the source dispersion, leading to non-zero

observation and successful estimation and localization. On

the other hand, for five robots the area can be divided in

such a way that robots do not consistently cross over the

source, resulting in an outcome that negatively affects the

success rate. The inconsistency in performance for the

clustering method is related to the team size, source con-

figuration, and even search area size. Thus, the clustering

method on average has low success rate and is not robust

with respect to the changes in team size.

Figure 7(c1) and (c2) show that the average success

rate for the information method is better for a smaller team

than compared with the raster-scanning and clustering

methods. In addition, Figure 7(c2) suggests that increasing

the number of robots will yield better performance (which

is not the case for the raster-scanning and clustering meth-

ods, compare Figure 7(a2), (b2), and (c2)). It is pointed

out that the clustering method outperforms the DeMAIT

algorithm when four robots are used. However, this case is

specific to a particular team size, search area, and source

configuration. In fact, as illustrated in Figure 6(b), the

results show that the information method outperforms both

the raster-scanning and clustering methods.

In summary, the results of this study validate hypoth-

eses (a) and (b), thus they support the main hypothesis that

the information method outperforms the other two

methods.

(d) Effect of search area size. This study investigates the

average localization success rate and how robust the per-

formance is to variations in the size of the search area (see

the details in Table 2(d)). For this study, a total of 1,500

simulations were conducted for search areas: 50m × 50m,

75 m × 75 m, 100 m × 100 m, 125 m × 125 m, to

Fig. 5. Simulation results for all methods between center placed and off-center placed sources. Plots (a1), (b1), and (c1) show

success rate for the raster-scanning, clustering, and DeMAIT methods, respectively. Plots (a2), (b2), and (c2) show average (over the

robots) localization error ea and associated confidence bounds single standard deviation, k sk, std k (std) for the raster-scanning,

clustering, and DeMAIT methods, respectively. Plots (a3), (b3), and (c3) show box plots between the two placement configurations,

and the average success rate indicated by ‘‘× ’’. Rate-based plume source was used for these cases. See Extension 1 for an example

of a simulation of the search process involving five robots and a rate-based and GADEN-based source.

Fig. 6. Box plots, and the average success rate indicated by

‘‘× ’’ for all test cases: (a) center placement and off-center

placement source; (b) number of robots; and (c) search area size.
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150 m × 150 m (100 trials per area, per method). In each

case, the rate-based source was placed at the center of the

search area and five robot agents were used and placed as

shown in Figure 3(a).

As expected, the average localization success rate as a

function of time depends on the size of the search area for

all methods (see Figure 8). Specifically, as the search area

decreases, the success rate improves for all methods.

Furthermore, one can see that the DeMAIT algorithm has

better success rate earlier on for a majority of the search

areas tested compared with the raster-scanning and clus-

tering methods (see Figure 8(a1), (b1), and (c1)). In addi-

tion, the raster-scanning method is unique in that the

success rate experiences a delay as a function of the area.

This behavior is not as significant in the clustering and infor-

mation methods (compare Figure 8(a1) and (b1)–(c1)).

Lastly, the results for the information method are

shown in Figure 8(c1) and (c2). Unlike the clustering

method, the results show monotonic decrease in per-

formance as the search area increases, as expected.

This result combined with the results in Figure 6(c)

support the notion that the DeMAIT algorithm shown

significant increase in average success rate compared

with the raster-scanning and clustering methods.

In summary, the results of this study validate hypoth-

eses (a) and (b), thus they support the main hypothesis that

Fig. 7. Simulation results for all methods utilizing different robot team sizes. Plots (a1), (b1), and (c1) show success rate for the

raster-scanning, clustering, and DeMAIT methods, respectively. Plots (a2), (b2), and (c2) show box plots, and the average success

rate indicated by ‘‘× ’’ for variations in the team size. Rate-based plume source was used for these cases.

Fig. 8. Simulated success-rate for all methods as the search area size varies: (a1) and (a2) raster-scanning method, (b1) and (b2)

clustering method, and (c1) and (c2) DeMAIT algorithm. Plots (a2)–(c2) show box plots, and the average success rate indicated by

‘‘× ’’. Source location was fixed at the center of the search area. Rate-based plume source was used for these cases.
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the information method outperforms the other two meth-

ods with respect to changes in the search area size.

(e) Performance for randomized source. This study investi-

gates the localization success rate and how robust the per-

formance is to variations in the source terms (see the

details in Table 2(e)), i.e., randomized changes in: (i) the

source location within the search area, (ii) the release rate,

(iii) wind magnitude and direction, (iv) diffusivities, and

(v) particle lifetime. In this study, 3,000 simulations were

conducted with 1,000 randomly sampled source terms. For

each case, the search area was 100 m × 100 m and five

agents were used.

Figure 9(a) and (b) show the results of the average

behavior for the three different methods tested and the

clear differences between the three methods. At the begin-

ning of the process, the raster-scanning method yields the

poorest performance (see Figure 9(a)). Both the clustering

and information methods show initial quick increase in

success, followed by a gradual and steady increase, with

the DeMAIT algorithm out performing the raster-scanning

and clustering method at the end of the test period.

Interestingly, the clustering method has better success

rate earlier on, albeit not by much, owing to coordination

(see blue circle and red circle, between the 2- and 6-min-

ute time frame). The coordination process quickly guides

the agents to cover more area early on. Thus, in many

cases the clustering method can localize quickly, espe-

cially when the source is near the starting location of the

agents. However, if coordination fails to bring the agents

close to the source, the estimation process is negatively

affected. On the other hand, if given enough time, the

DeMAIT algorithm is overall more effective and yields

more consistent results regardless of the size of the source

and its location and orientation.

It is pointed out that Figure 9(b) shows the clustering

and information method have relatively similar perfor-

mance. However, as the previous results show, the cluster-

ing method’s performance depends directly on the number

of robots used, and thus, it is expected that the DeMAIT

algorithm’s performance would be improved beyond the

clustering method more clearly if the number of robots are

lower. As the results show in Figure 9(a), within 15 min-

utes the DeMAIT algorithm is on average 75% successful

regardless of the source configuration, thus outperforming

the raster-scanning and clustering methods.

In summary, this study only supports hypothesis (a), and

the results are inconclusive to support hypothesis (b).

However, based on the results from the previous three cases,

it is believed in general that it is likely that the information

method will have similar or better performance overall com-

pared with the other two methods. Future work will investi-

gate more rigorously whether the information method will

outperform the other methods with randomized variations in

search area size, source terms, number of robots, etc.

Results for GADEN-generated plume source for scenarios

(a), (b), (c), and (d). The primary focus of this study is to

investigate the performance of the information method on

a more realistic chemical dispersion model generated by the

GADEN package (Monroy et al., 2017). Specifically, this

study investigates the localization success rate with variations

in the source terms, number of robots, and the search area

size (see details in Table 2(a), (b), (c), and (d)). This study

involved 1,200 simulations. The details of the parameters

used in the GADEN plume are listed in Table 1.

Similar to the previous simulation studies, Figure

10(a1) and (a2) compare the success rate for the center-

placed plume with the off-centered placed plume. Figure

10(b1) and (b2) show the success rate as a size of the robot

team varies, and lastly, Figure 10(c1) and (c2) show the

success rate as the search area increases. Unfortunately,

due to high computational demands and complexity, simu-

lations for a randomized GADEN-generated plume were

not conducted.

First, the performance of the DeMAIT algorithm

applied to the GADEN-generated plume (as shown in

Figure 10) is at least as good as the results shown in

Figure 5, 7, and 8 with the rate-based plume source.

Interestingly, in many instances, the performance is better

than the rate-based plume. For example, comparing Figure

7(c1) and (c2) with Figure 10(b1) and (b2) and Figure

8(c1) and (c2) with Figure 10(c1) and (c2), the differences

are evident as the size of the team decreases and as the

search area increases. Furthermore, the performance is

better despite the fact that the GADEN-plume does not

match the measurement model. It is expected that the

results for the raster-scanning and clustering methods

tested against the GADEN generated plume would show

similar performance increase compared to the results

obtain while testing against a Gaussian plume. This is

because the GADEN-plume is larger in size compared

with the Gaussian plume and the same Bayesian filter for

the DeMAIT algorithm is used for the raster-scanning and

clustering methods.

Summary of simulation results. As the simulation results

show, the DeMAIT algorithm localization success rate is

less affected by changes in the source configuration, the

size of the robot team, and size of the search area as indi-

cated by the first three tests, and the test involving the

GADEN plume. In all of the test cases, the success rate

for the information method is better than the other two

methods. Robustness was not clearly shown for the

Fig. 9. Simulation results for all methods for a randomly

sampled rate-based dispersion: (a) success rate for the raster-

scanning, clustering, and DeMAIT methods; (b) box plots for

comparison.
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randomized test, but it is believed that, in general, it is

likely that the information method will have similar or

better performance overall compared with the other two

methods. Although the clustering and information meth-

ods show relatively similar performance for the rando-

mized chemical leak test case, this result is likely due to

the specific size of the robot team and search area as evi-

dent by the corresponding results for the text cases involv-

ing the number of robots and search area. Hence, it is

expected that the DeMAIT algorithm’s performance (for

the randomized test case) would surpass the clustering

method if the number of robots were lower. That being

said, the DeMAIT algorithm showed the greatest success-

ful rate (75%) across the various methods regardless of

the source configuration. In addition, as shown by the cen-

ter placed and off-center placed test cases, the clustering

method can exhibit significant performance differences.

From the simulation results, it is pointed out that even

though GADEN can represent realistic behavior of plumes,

there are limitations regarding GADEN’s ability to

model mixing and the effects of the vehicle propellers.

Furthermore, GADEN plumes were generated using static

wind conditions, however, as can be observed in the

experiments, wind conditions can fluctuate frequently.

Lastly, communication in real-world environments can be

sporadic and irregular, which was not accounted for in the

simulation. However, the outdoor experiments described in

the following incorporate decentralization to deal with this.

5.3. Outdoor experimental results and

discussions

The following section discusses the details of the outdoor

experiments, results, and discussion. It is noted that the

outdoor experiments were only conducted to demonstrate

proof-of-concept of the DeMAIT algorithm, following

the conclusions made from the simulation results.

Experiments were not performed in a way to gather data

to show statistical significance. Doing so would have

required precise control over the environment and the

release of the source, as well as many trials and a signifi-

cant amount of resources, which is beyond the resources

available and the scope of this article.

5.3.1. Custom-designed chemical-sensing aerial robot

team. A team of chemical-sensing aerial robots were

developed for the outdoor experiments. Figure 11(a) and

(b) show the team of five that were used and the details of

one, respectively. Each robot is equipped with two chemi-

cal concentration sensors (MOX and MPS). Each robot is

controlled by a Pixhawk 3 flight controller, where addi-

tional computation is performed using a Linux-based com-

panion single-board computer (Odroid XU4) with an A7

Octa-core CPU and 2 GB LPDDR3 RAM. Each robot is

powered by a 5.8 Ah Li–PO battery and it carries a

Hokuyo LiDAR for obstacle detection. A GPS module

provides position information. The wireless communica-

tion system consists of a 2.4 GHz WiFi module and a 900

MHz wireless UART Xbee module. The avionics and

communication hardware are very similar to the system

described by Vásárhelyi et al. (2018), except the Xbee

module is solely used for inter-agent communication. For

more information about the custom-designed chemical-

sensing aerial robot, refer to He et al. (2019).

5.3.2. Chemical source system. Figure 11(c) and (d) show

a custom-built propane-gas source consisting of 10× 20-

lb (9.07 kg) propane tanks, 30 PSI (206.8 kPa) regulator

valves, 20 ft. (6.1 m) of 3=8-in (0.95-cm) diameter gas

Fig. 10. Simulation results for the DeMAIT algorithm for all test cases where the source is generated by the GADEN plume model

(see the details in Table 1): (a1), (b1), and (c1) success rate for the center-placed and off-center placed plume, team size, and search

area size test cases, respectively; (a2), (b2), and (c2) the associated box plots.
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tubing, normally closed solenoid valves, 360 W power

supply, a button for quick shutoff, and a tripod to elevate

the release point. The release point of the propane gas and

the propane tanks were separated by an extension of tub-

ing for safety. Owing to the rapid expansion of the pro-

pane, measuring the gas source release rate is challenging.

Thus, in this article, the results of the outdoor experiment

focus on localization and future work will quantify and

compare other source parameters.

5.3.3. Experimental setup. Figure 11(e) shows an aerial

view of the experimental setup, including the aerial robots,

the propane-gas source, an anemometer for measuring

wind speed and direction to serve as ground truth, the

boundaries of the 50 m× 50 m search area, and the

ground station. Note that the ground station was only used

to configure the system and not as a centralized controller,

data fusion center, or global planner.

Initial testing was done to check the collision avoidance

algorithm and the results are presented in Figure 12, show-

ing the displacement between pairs of robots. In this test,

each robot planned (from its initial conditions) trajectories

and had to avoid other agents while following its respec-

tive trajectories. The avoidance radius was set to 2.5 m

and the maximum speed was set to 3.5 m/s. As expected,

aerial robots remained over 5 m apart for the majority of

the experiment. The times in which robots were closer

were due to intermittent communication delays. Please see

Extension 2, which shows the results from the outdoor

experiment corresponding to the results in Figure 12(c).

Experiments consisted of two test cases, as summarized

in Table 3, where the sources were placed off-center in the

search area. The reason to do this is because the simulation

results showed that such cases were more challenging.

First, the source is placed (a) at the top-left corner of the

search area and the gas release points towards the center of

the search area. In the second experiment, the propane leak

is placed (b) at the top-right corner of the search area and

the gas release points away from the center of the search

area. In both cases, the source location is relatively far

from the initial starting location for the robot agents.

5.3.4. Experimental results. (a) Off-centered placement

and source pointing inward. The results for this

Fig. 11. Details of outdoor experiments: (a) aerial robot team consisting of five agents, (b) detailed view of the custom-built aerial

robot and hardware, (c) propane gas source consisting of 10 gas tanks and safety shutoff switch, (d) layout of the gas release setup,

and (e) aerial view of the experimental setup including the aerial robots, search area, starting location of the robots, ground station,

gas source, anemometer, and power supply and release on/off switch.

Fig. 12. Outdoor collision avoidance tests with (a) two, (b)

three, and (c) four aerial robots. Each aerial robot planned and

executed similar trajectories and avoided successfully. (a)–(c)

Displacement between all pairs of aerial robots. See Extension

2, which shows the results that correspond with this figure.
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experiment are presented in Extension 3 and the results

are summarized in Figure 13, where the first three col-

umns of the images in the top row, (a1)–(c1), show the top

view of the experiment with all five robots and the loca-

tion of the source at time instances 20 s, 200 s, and 380 s,

respectively. The measured wind rose is shown in Figure

13(d) and Figure 13(a2)–(c2) show the trajectories for

each robot, the particle distribution for the estimation pro-

cess, and the composite contour of the plume model, cor-

responding to the images shown in Figure 13(a1)–(c1).

The black arrow represents the direction of the gas release

and the red arrow denotes the wind direction. Finally,

Figure 13(e) shows the localization error with standard

deviation bounds as a function of time. This error value is

computed by the difference between the agents’ estimated

source location and ground truth (true source location).

As can be seen, the robots begin their search by investi-

gating the bottom right-hand corner. Initially, the agents

search near their starting locations and this is influenced

by the weight of the cost associated with distance. When

lack of information outweighs the distance cost, the agents

search towards the top left of the search area as shown in

Figure 13(b2) and (c2). Eventually, the agents localize the

source to within 5 m of the actual propane gas leak.

As observed in the localization error as a function of

time in Figure 13(e), this experiment demonstrates the

effectiveness of the DeMAIT algorithm in achieving suc-

cess in terms of localizing the source.

Fig. 13. Outdoor experiments with off-centered placement of source, where the release is pointing inward of the search area: (a1),

(b1), and (c1) top view of the experiment at 5% (20 s), 50% (200 s), and 95% (380 s) of the total experiment time, respectively; (d)

the measured wind rose; (a2), (b2), and (c2) the corresponding trajectories for each robot, the particle distribution (for each robot)

for the estimation process, and the composite contour of the plume model. The black arrow presents the direction of the gas release

and the red arrow denotes the wind direction; and (e) the estimated localization error with standard deviation bounds as a function of

time. See Extension 3, which shows the results that correspond with this figure.

Table 3. Summary of outdoor experiment

Test cases

Source configuration Off-center placement with source pointing
inward of search area

Off-center placement with source pointing
outward of search area

Unknown chemical leak
description

Propane gas leak is placed in the top-left
corner of the search area and pointed
inward of the search area

Propane gas leak is placed in the top-left
corner of the search area and pointed
outward of the search area

Number of robots 5 4
Search area (m2) 50 × 50 50 × 50
Conclusions Estimated localization error within 5 m of

actual source
Estimated localization error within 10 m
of actual source
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(b) Off-centered placement and source pointing outward.

This experiment is considered to be the more challenging

case, where the gas release is pointed outward of the

search area. The results are summarized in Figure 14 and

Extension 4 shows the experimental results. Similar to the

previous case, the agents were able to localize the source.

However, the agents had to eliminate several possibilities

before finally converging on the source location in the

end. For example, compare the distribution of particles in

Figure 14(b2) with Figure 14(c2), where the concentration

of particles converge to the top right-hand corner. In the

end, the agents localized the source to within 10 m of the

actual source location, and this experiment illustrates that

even in situations where the search area does not fully

cover the profile of the source, the DeMAIT algorithm

was able to yield success.

During these experiments, the prior distribution for

height zs was set to be a uniform distribution over ½0, 3�.
Thus, the height error had a limited effect on the total error

of the localization. It is expected that increasing the uncer-

tainty in the prior distribution of the height of the source

would increase the difficulty of the localization and would

require the robots to navigate vertically. This aspect will

be studied in future research.

Summary of experimental results. In summary, the outdoor

experimental results presented in Figures 13 and 14

demonstrate that the information method is effective at

localizing the source of a live propane gas leak, under rea-

listic conditions.

6. Conclusions and future work

This article has described a new DeMAIT control algo-

rithm for target estimation and localization. The details

of the algorithm have been described, and simulation

and outdoor experiments have been conducted to

demonstrate effectiveness of the algorithm. In particu-

lar, the simulation results have validated the hypothesis

that the DeMAIT algorithm yielded better on average

localization success rate compared with two methods

tested (raster-scanning and clustering methods). The

performance of the DeMAIT algorithm has also been

found to be robust with respect to variations in the

source location, robot team size, and search area size,

for a rate-based dispersion. For the randomly sampled

rate-based source, the results were inconclusive about

whether the DeMAIT algorithm was robust to general

random variations in the source terms. However, in this

case, the DeMAIT algorithm’s average localization

success rate was at least as good as the clustering

method. Finally, outdoor field experiments and results

for two difficult test cases have demonstrated that the

DeMAIT algorithm was successful at localizing the

source of a live propane gas leak.

Fig. 14. Outdoor experiments with off-centered placement of source, where the release is pointing outward of the search area: (a1),

(b1), and (c1) top view of the experiment at 5% (20 s), 50% (200 s), and 95% (380 s) of the total experiment time, respectively; (d)

the measured wind rose; (a2), (b2), and (c2) the corresponding trajectories for each robot, the particle distribution (for each robot)

for the estimation process, and the composite contour of the plume model. The black arrow presents the direction of the gas release

and the red arrow denotes the wind direction; and (e) the estimated localization error with standard deviation bounds as a function of

time. See Extension 4, which shows the results that correspond with this figure.
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Future research efforts will focus on fusing multiple

data sources such as cameras and concentration sensors to

improve the localization and estimation process. The work

will also consider more complicated scenarios such as

multiple sources, physical obstacles that can obstruct and

alter the plume source(s), and balancing the desire to mini-

mize uncertainty in the measurement and seeking the

source.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media
type

Description

1 Video Simulation of DeMAIT algorithm
involving 5 robots and rate-based plume
source, placed at the center of search area.

2 Video Outdoor flight results corresponding to
Figure 12(c), demonstrating the trajectory-
tracking controller and collision
avoidance algorithm with four robots,
where each agent is given the same
trajectory.

3 Video Results showing the behavior of robots
running the DeMAIT algorithm for the
off-centered plume source. Source is
directed into the search area.

4 Video Results showing the behavior of robots
running the DeMAIT algorithm for the
off-centered plume source. Source is
directed out of the search area.
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