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systems. This is particularly important for tracking control of flexible structures
because the input-state trajectories, that achieve tracking of the required output, may
cause excessive vibrations in the structure. Therefore, a trade-off is required between

tracking and vibration reduction. We pose and solve this problem, in the context of
linear systems, as the minimization of a quadratic cost function. The theory is devel-
oped and applied to the output tracking of a flexible structure and experimental

results are presented.

1 Introduction

Large structures, like manipulators for assembling the space
station, are lightweight, and hence flexible. The structural flexi-
bility results in significant elastic vibrations that are caused
not only by exogenous perturbations but are also caused by
maneuvers like slewing. Recent works have solved the output
tracking problem, for example, given a desired output trajectory,
inversion-based techniques find input-state trajectories that ex-
actly track the output (Bayo, 1987; Kwon and Book, 1990;
Ledesma et al., 1994; Devasia et al.,, 1996; Devasia, 1997).
These inversion-based techniques have been successfully ap-
plied to the control of multi-joint flexible manipulators in Mou-
lin and Bayo (1991); Paden et al. (1993), and to aircraft control
in Meyer et al. (1995); Martin et al. (1996); Tomlin et al.
(1995).

If the number of actuators are the same as the number of
tracked-outputs (square systern), then the inverse is unique. For
a desired output trajectory, the inverse technique finds the
unique bounded input-state trajectory, that can achieve exact-
tracking. Although such an input-state trajectory exactly tracks
the desired output, it might not meet other performance require-
ments in flexible structures. For example, during slewing ma-
neuvers of a flexible manipulator, the structural deformations—
determined by the inverse state trajectories—may be unaccept-
able. Further, excessively large actuator-inputs might be needed
during an exact tracking maneuver (Tomlin et al., 1995). If the
number of actuators are more than the number of outputs to be
tracked, then the actuator redundancy can be used to optimally
minimize the actuator-inputs and to reduce structural vibrations
{Devasia and Bayo, 1994). However, if such actuator redun-
dancy is not available then a compromise is desired between
the tracking requirement and other goals like the reduction of
internal vibrations and prevention of actuator saturation—the
output trajectory needs to be redesigned.

The problem of redesigning an input to the system to mini-
mize residual and in-maneuver vibrations for flexible structures
has been well-studied in literature—see for example Singer and
Seering (1990), Aspinwall (1980), Swigert (1980), Farren-
kopf (1979), Bhat and Miu (1990), Smith (1958). In tracking
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problems, however, outputs are usually specified and not the
inputs—input trajectories have to be computed from the desired
outputs. For nonminimum phase systems (e.g., flexible struc-
tures with non-collocated sensors and actuators), the inputs to
the system are difficult to determine and require the inversion
of the system dynamics. Thus, if an output-maneuver is being
designed then typical input-modification based approaches are
not directly applicable. Rather than (a) find the input through
inversion and then (b) optimize the inverse input, this paper
describes a method to directly solve the optimal-inverse prob-
lem.

One existing approach to solve the output-redesign problem
is to extend the input-redesign problem to the output-redesign
problem. Such an approach: (a) chooses a feedback-based
tracking controller—the desired output trajectory is now an
input to the closed-loop system; and (b) redesigns this input to
the closed-loop system. Thus, the output is redesigned (Singer
and Seering, 1990). These redesigns are, however, dependent
on the choice of the tracking controllers (Cook, 1993) because
the controller optimization and trajectory redesign problems
become coupled—this coupled optimization is still an open
problem. An additional problem with this approach is that
purely feedback-based output tracking may not yield satisfac-
tory tracking due to performance-limitations of feedback-based
regulators for nonminimum phase systems (Qui and Davison,
1993).

In contrast to input-redesign, we present an approach to di-
rectly redesign a given output-maneuver y, by developing an
optimal-inversion approach. This approach also finds a feed-
forward input trajectory that achieves exact tracking of the mod-
ified output-maneuver. Any errors in the tracking the modified
output trajectory, y,, (due to, for example, initial conditions
and modeling errors) can then be be corrected using standard
feedback approaches, i.e., stabilize the state trajectory, X,
which exactly tracks the optimal output, y,,, (see, for example,
Khalil, 1991). For example, the feedback-control that stabilizes
the state trajectory can be chosen as Ke, where e is the tracking
error and K is the feedback controller gain. During the exact-
inversion-based trajectory redesign, the feedback controller is
inactive because the tracking error, ¢, is zero, and therefore the
trajectory redesign is independent of the particular choice of
the feedback law (i.e., the choice of K). In this sense, the
optimal-inversion-based output-redesign problem is decoupled
from the choice of a particular feedback controller needed to
stabilize the system. This approach is illustrated with an exam-
ple in this paper.
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We pose the output trajectory redesign problem as an optimi-
zation of a general quadratic cost function as in Chun et al.
(1985), and solve it in the context of linear systems. The formu-
lation allows for the minimization of both: (a) residual vibra-
tions and (b) vibrations during the maneuver. Such in-maneuver
vibration-reduction is required for tracking maneuvers of flexi-
ble spacecraft (see, for example, Chun et al., 1985, and recent
command-shaping techniques in Singhose et al., 1996, 1997).
The redesigned output trajectory is obtained by passing the
initial output-trajectory through a pre-filter and can be imple-
mented using a convolution similar to the convolutions preva-
lent in command shaping approaches (see for example Singer
and Seering, 1988, 1990).

The criterion for the proposed output-trajectory redesign can
be defined in terms of a quadratic cost functional; this cost
criterion can be chosen to obtain a trade-off between the preci-
sion in tracking, and the reduction of structural vibrations and
inputs. For a particular cost criterion, the optimal input can be
obtained using a prefilter. An advantage of the present technique
is that this prefilter only depends on the choice of the optimiza-
tion criterion (choice of weighting matrices in a quadratic cost
functional) and does not depend on the particular output trajec-
tory. Thus, for a given optimization criterion, the prefilter can
be precomputed independent of the output.

If the redesign of a particular output-trajectory is desired,
then it is also possible to use the proposed approach for satis-
fying other criterion—like the prevention of actuator saturation.
This can be achieved by manipulating the weighting matrices
in the cost functional as in standard linear quadratic optimal
control approaches. However, in such redesigns, the appropriate
choice of the cost-criterion will depend on the particular output
to be tracked. Thus, the resulting output-redesign will also de-
pend on the particular output trajectory.

We begin by formulating the optimal output-trajectory rede-
sign problem, and then solve it in the context of general linear
systems. This theory is then applied to an example flexible
structure and experimental resclts are provided.

2 Problem Formulation and Selution

System Inversion for Exact Tracking, Let the system dy-
namics be described by :

X = Ax + Bu
y=0Cx

where x € ®", u € R” and y € ‘#”. The inversion approach
(see, for example, Devasia et al., 1996) finds a bounded input-
state trajectory that satisfies the above system equations, and
yields the exact desired output, i.e.,

x'ref = Axref + Buff
Ya = Cxyy.

The inverse input-state trajectories can be described in terms
of Fourier transforms as (Bayo. 1987)

wr(jw) = [Cjwl - A)7'B] ' y,(jw)
= Gy (jw)ya(jw)
Xnp(jw) = [(wl — A) 7' Bluy(jw)
= Ge(jw)ugr (jw). (1)

This Fourier-based inversion approach has been extended to
nonlinear, time-varying, nonminimum-phase systems in De-
vasia and Paden (1998). However, we restrict our present dis-
cussion to linear time-invariant systems.

Remark 1. We note two results. One, an inverse exists if
the output and a certain number of its time-derivatives are
bounded. The number of time derivatives of the output, that
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needs to be specified for an inverse to exist, is well-defined and
depends on the relative degree of the system (Isidori (1989 );
Devasia et al. (1996)). Second, for linear systems, with the
same number of inputs as outputs, if the inverse exists then it
is unique ( Bayo, 1987; Kwon and Book, 1990; Ledesma et al.,
1994; Devasia et al., 1996).

The Performance Criterion. Trajectory redesign seeks a
compromise between the goal of tracking the desired trajectory
and other goals like reducing inputs and vibrations. We formu-
late this redesign problem as the minimization of a quadratic
cost function of the type

f_ {u(t)"Ru(r) + x(1)"Q.x(2) + [y(1)

= 7(DQy(1) — yu()]}dr (2)

where R, O, and Q, are symmetric matrices that represent the
weights on control-input, states, and the output-tracking-error,
respectively. y, is a desired output-trajectory which has an in-
verse (for requirements on y,, see Bayo, 1987; Devasia et al.,
1996). Using Parseval’s theorem we rewrite our optimization
problem in the frequency domain as the minimization of the
cost functional

J:= {u(jw)*Ru(jw) + x(jw)*Qx(jw)
+ [yGw) = 20 *Qy(jw) — ya(jw)l}dw (3)
where the superscript * denotes complex conjugate transpose.

Optimal Redesign of the Qutput. Our main result is given
by the following lemma, which shows that the optimal output-
trajectory redesign can be described as a prefilter, which maps
a given desired output trajectory, y,, to its redesigned output
trajectory, y,,. For a given cost functional, the pre-filter, G;,
doesn’t depend on the particular choice of desired trajectory.
Thus, the prefilter can be pre-computed.?

Lemma
¢ The modified output trajectory, y,,, is given by

Yopr(jw) = Gr(jw)ya(jw)
where
Gi(jw) =1 - GR + G¥ Q.G, + G¥Q,G,]"'[R
+ G¥ 0.G1G;".
* The modified input trajectory u,,,, that exactly-tracks the
optimal output y,,, is given by
Uope(Jw) = U (jw) + Vo (jw)
where
Vopr(Jw) = Gu(jw)ya(jw)
and
G(jw) = —(R + G¥Q.G. + G} 0,G,)""(R

+G¥O.G)HG; (W)

* The modified state trajectory x,,,, which is found through
inversion of the optimal output y,,, is given by

Xop(Jw) = G(Gw)GT' (Jw) G juwdya(jw)

?*MATLAB code for optimal inversion of single-input single-output systems
can be obtained by email to santosh@eng.utah.edu.
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Proof: Without loss of generality we rewrite the input u as
the sum of the feedforward input, G;'y,, found from inversion
of the desired trajectory, and an arbitrary v

u(jw) = uy(jw) + v(jw)
= G;'(jw)yas(jw) + v(jw). (5)

Substituting x(jw) = G(jw)u(jw), and y(jw) =
G,(jw)u(jw) along with the input » found from Eq. (5) into
the cost function given by Eq. (3), we obtain

J=Jm{[v+(R+G;kaGX

+ G¥0,G) (R + G¥ Q.G)G; 'y 1* X (R + GF Q.G
+ GrQ,G,)) X [v+ (R + G} O.G, + Gf 0,G)7!
X (R + G¥ Q.G)G7'yal + (GJ'ya)*[(R + G¥ Q.G.)
- (R + G¥Q.G)* X (R + G} Q.G

+ Gy Q,G) (R + GF Q.GING; ya) }dw

Note that the first term (enclosed in square brackets) in the cost
function is quadratic and the cost function can be minimized
by setting this quadratic term to zero, i.e., by choosing

v(jw) = v (jw) = G(jw)ya(jw),

where G, is defined by Eq. (4) in the Lemma. The choice of v
= v, defines the optimal input u,,, through Eq. (5) as

Uop(jw) = [G;' (jw) + Gu(jw)lya(jw).

The result follows from

(6)

)’opx(jw) = Gy(jw)uopt(jw)
=[1 + G(w)G(w)ly.(jw). U

Remark 2. We point out two extreme cases. First case: if
the weight on the tracking error is zero, Q, = 0, but R is positive
definite then we obtain v = — (G5 'ys) = ~uy. This implies that
the input u,, = uy + v = 0, i.e., the best strategy is not to track
the desired trajectory at all. Second case: if the weight on the
inputs and states are zero, i.e., R = 0 and Q. = 0 but with Q,
positive definite then y,, = v,. This implies that exact output-
tracking is optimal, and the cost is again zero.

Remark 3. If the cost function is defined in the frequency
domain (as in equation (3)) then the weighting matrices R, O
and Q, can be frequency dependent—such frequency dependent
weights can be used, for example, to account for actuator-
bandwidth-limitations (Gupta, 1980).

3 Example

Experimental System. Consider an experimental flexible
structure which consists of two discs connected by a thin shaft
as shown in Fig. 1. These two discs can rotate freely. The

Fig. 1 Schematic experimental setup
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transfer function of the system, approximated by a rigid body
mode and one flexible mode, was obtained experimentally using
a HP3562A Dynamic Signal Analyzer. Input, u, to the system
is the voltage (volts) applied to a DC motor, and the outputs
are the angular rotations (in degrees) of the two disks 8, 6.
These angular rotations are measured using potentiometers, and
the transfer functions are obtained as

6 _ 2190352 + 134655 + 84.2
u  S*+ 5125° + 6.9375% + 2.4445 + 0.3186
8 3.5885% - 1.186S + 84.2

i 3 2 - (D
u S*+ .5125° + 6.9375% + 2.4445 + 0.3186
A comparison, of the frequency response plots of the above
transfer functions with the experimental plots (see Fig. 2),
shows that the one-flexible-mode approximation 1s sufficient to
adequately model the plant. The large inertia at the two ends
of the flexible-shaft (Fig. 1) creates a very low fundamental
vibrational frequency (around 0.4 Hz) —the structural vibra-
tions also have a low damping coefficient. It is noted that the
structure tends to settle in one particular equilibrium configura-
tion due to a small imbalance in the mass distribution (i.e., the
structure has a static imbalance ) which is not modelled by these
transfer functions. Further, this linear model also has errors in
modeling the friction at the bearings.

With the state vector, x, chosen as x := [6,; 8, 6, 92]7 the
system equations can be represented in state-space form as

0 1 0 0
5 —-3.6562 -0.4359 3.5734 -0.0910
0 0 0 1
3.2453 —0.1256 -3.2589 -0.0764
0
21.903
o
3:588
= Ax + Bu

y:=6,=[0010]x. (8)
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Fig. 3 Desired and modified output profiles. Dotted line represents desired values; solid line represents modified values.

Output Redesign. The control objective is to track the an-
gular rotation, §, of the disk, that is farthest away from the
motor (see Fig. 1). The desired output trajectory used in the
example, and its time-derivatives are shown in Fig. 3. For this
particular example, the second derivative of the desired output,
ie., the desired angular acceleration profile of the output,
uniquely determines the inverse, exact-tracking, input-state tra-
Jectory (since the relative degree is two (Isidori, 1989). Thus,
the acceleration, specified by the desired output, also determines
the resulting structural vibraticn, 8, — 6,. If the internal vibra-
tions are to be reduced, then we have to relax the exact-tracking
requirement. Similarly, to reduce the required input amplitudes,
we have to compromise exact-tracking. This trade-off can be
represented as the minimization of a general quadratic cost
function given in Eq. (2) with R = r, Q, = ¢,, and

1 0 -1 0
__ 0o 0 0 o0
Q=d¢1_1 90 1 o
00 0 0

The scalars r, g,, g, represent the relative weights on the reduc-

angular position
80

o 20 40

time(s)

elastic deflection

o 20 40 60

time(s)

tion of inputs, structural vibrations and output-tracking errors,
respectively. For example, increasing r tends to reduce the in-
puts used. In the simulations and experiments, these constants
were chosen as r = 1, g, = 5, and g, = 1. Note that for this
particular choice of the weights, the prefilter is independent of
the particular output trajectory to be redesigned.

Remark 4.  For a particular output trajectory, the weights,
7, g, and g, can be manipulated to achieve goals, like the
prevention of actuator saturation. However, in such redesigns
the appropriate choice of the cost-criterion (and the resulting
prefilter ) will depend on the particular trajectory.

Results. The output was redesigned and the performance
improvement was evaluated in terms of elastic deflections, 6,
— 6, of the flexible shaft and in terms of the inputs to the
actuator, u. The modification of the desired trajectory is shown
in Fig. 3. The input-state trajectory was found through inversion
as described in Eq. (1). Two sets of inverses were found: first
with the original trajectory, y,, and second with the modified
output trajectory, y,,. Figure 4 compares the original and modi-
fied input-state trajectories found from inversion. The state tra-
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0 (e

-20
o] 20 40

time(s)

Input
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time(s)

Fig.4 Inverse of desired and modified output profiles. Dotted line represents desired values; solid line represents modified

values.
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Fig. 5 The control scheme

jectories, found from inversion, were stabilized through feed-
back (see control scheme in Fig. 5) —note that the trajectory
redesign is independent of the choice of the feedback law. Ex-
perimental results are presented in Fig. 6.

The experimental results shown in Fig. 6 confirm that rela-
tively small modifications of the output trajectory (Figs. 3 and
6) can lead to substantial reductions in inputs and elastic vibra-
tions. From the experimental data (Fig. 6), the root mean square
(rms) value of the output-modification was 2.41 degrees for a
maneuver that has a maximum desired slew of 60 degrees. With
this modification of the output trajectory, the rms value of the
input was decreased by 47.5 percent, and rms value of the twist
in the flexible shaft was decreased by 34.6 percent.

4 Discussion

Recently developed inversion-based approaches achieve out-
put tracking by finding feedforward inputs and reference state
trajectories that yields exact output-tracking. Such an inverse
input-state trajectory is unique for a given output trajectory.
Therefore, the accompanying vibrations and inputs (resulting
from applying the inversion-based controlier) may not be ac-
ceptable. Figures 3 and 4 show that output-tracking can be
traded-off (i.e., the output can be modified) to achieve substan-
tially lower vibrations and inputs.

It is noted that an output modification does not necessarily
imply that a substantial increase in maneuver time is needed.
However, if a substantial decrease in vibration is required (i.e.,
a large g, is chosen in the cost-functional) then the maneuver
time can increase. However, if an increase in maneuver time is
needed, then this increase is not a drawback of the approach,
but is the result of the designer’s choice of the cost-criterion,
and the particular original output trajectory. Even for situations
in which the trajectory redesign results in an increase in the
time during which the output is changing, the total maneuver
time (which should also include the time during which the input
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Fig. 6 Output redesign: experimental results. Dotted line represents

tracking for the original trajectory and solid line represents tracking for
the modified trajectory.
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is non-zero) may not change significantly with output redesign.
In the present example, the amount of preactuation time (during
which the input is nonzero) is similar for, both, the original
output trajectory and the modified output (compare input trajec-
tories in Figs. 4 and 6). Thus, the effective maneuver time has °
not changed for the modified output trajectory.

The output-trajectory modification can include combinations
of (a) increase in maneuver time and (b) smoothing of the
output trajectory. Although it is intuitive that such modifications
can lead to a decrease in magnitudes of vibrations and inputs,
typical approaches are ad-hoc and do not exploit the knowledge
of the system dynamics. In contrast, the present approach pro-
vides a more systematic approach, that can be used by the
designer to achieve a trade-off between exact tracking and other
requirements like vibration and input reductions.

5 Conclusion

The trajectory redesign problem was formulated and solved
in the context of linear invertible systems—including nonmini-
mum phase systems. The approach provides a systematic ap-
proach to an optimal trade-off between tracking desired trajec-
tory and other goals like vibration reduction and reduction of
required inputs. The approach was applied to an example flexi-
ble structure, and experimentally verified. Future work will ad-
dress trajectory redesign for nonlinear systems.
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