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Abstract

This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terres-

trial robot (ATR). The ATR has the ability to fly through the air or roll on the ground,

for applications that include search and rescue, mapping, surveillance, environmental

sensing, and entertainment. The design centers around a micro-quadcopter encased

in a lightweight spherical exoskeleton that can rotate about the quadcopter. The

spherical exoskeleton offers agile ground locomotion while maintaining characteristics

of a basic aerial robot in flying mode. A model of the system dynamics for both modes

of locomotion is presented and utilized in simulations to generate potential trajecto-

ries for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton

design and fabrication are discussed, including the robot’s turning characteristic over

ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of

the ATR are experimentally tested and are in good agreement with model-simulated

performance. An energy analysis is presented to validate the overall efficiency of the

robot in both modes of locomotion. Experimentally-supported estimates show that

the ATR can roll along the ground for over 12 minutes and cover the distance of

1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh bat-

tery. Compared to a traditional flying-only robot, the ATR traveling over the same

distance in rolling mode is 2.63-times more efficient, and in flying mode the system

is only 39 percent less efficient. Experimental results also demonstrate the ATR’s

transition from rolling to flying mode.
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Chapter 1

Thesis Goal, Objectives, and
Contribution

1.1 Introduction

Aerial robots that can hover and maneuver quickly and accurately in tight urban and

indoor spaces are well suited for applications that include search and rescue [1]– [3],

mapping [4], [5], surveillance [6], environmental sensing [7], [8] and disaster remedia-

tion [9]. Interest in aerial robots has grown at a rapid pace, but relatively short flight

time, limited control of maneuvers, self-localization, sensing, and end user safety pose

significant challenges [10]. This thesis presents the development of a new hybrid robot

that combines aerial and terrestrial (hybrid) locomotion to address the challenges of

efficiency and limited functionality of ground and aerial vehicles. The objectives of

this thesis are to design, build, and model an ultra-small spherical ATR, then utilize

the model to generate control parameters and inputs to demonstrate hybrid locomo-

tion. Herein, the design, modeling, simulation, characterization, and control of a new

spherical aerial terrestrial robot (ATR) is presented.

The ATR consists of an airborne (e.g., multi-rotor) platform encased in a spherical

exoskeleton which can be exploited for energy efficient rolling without the use of

additional actuators, preserving the system’s mechanical simplicity. Figure 1.1 shows

the ATR and the various modes of locomotion. The developed ATR is smaller than
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6 inches in diameter, thus the user can easily hand launch the robot like a ball into

flying mode, and depending on the situation, the robot can fly, or enter rolling mode

to traverse over the ground surface or through pipes and air ducts.

Figure 1.1: Concept of the aerial terrestrial robot (ATR). The robot can be hand
launched and operate in either flying or rolling mode. Rolling mode is convenient
for energy efficient locomotion and maneuvering through tight spaces and challenging
terrain.

1.2 Contribution

The contribution of this work is the design, modeling, simulation, trajectory gener-

ation, fabrication, and demonstration of an aerial terrestrial robot. Hybrid modes

of locomotion enable the ATR to negotiate challenging obstacles and terrain while

maintaining the benefits of each respective mode of locomotion. In addition to yawing
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about the ground contact point, a novelty of the ATR is its capability to turn while

rolling in a method similar to how a railcar navigates curves in its tracks. The ATR

can position itself on varying diameter rings of its exoskeleton in contact with the

ground while rolling, causing the platform to turn in a circular manner which allows

the ATR to follow complex curved ground trajectories. Compared to flying, rolling

mode can be used to avoid detection, and since the ATR does not need to support its

own weight in rolling mode, it can be more energy efficient, thus preserving battery

power.

1.3 Organization

This thesis is organized as follows. Chapter 2 presents a background of existing

unmanned autonomous systems including aerial, terrestrial, and hybrid locomotive

systems. Chapter 3 presents the details of the ATR system design, along with the

specification and fabrication of the ATR. Chapter 4 presents a model of the experi-

mental system and Chapter 5 presents the characterization of the experimental sys-

tem. Specifically, the synthesized controller performance is evaluated, motor parame-

ters are measured, and physical system parameters are evaluated. Chapter 6 presents

a simulation of the prototype ATR based on the formulated model and system char-

acterization. Chapter 7 presents autonomous aerial and terrestrial locomotion results

and discussion. Finally, conclusions are presented in Chapter 8.



4

Chapter 2

Background

This chapter serves to provide a background on unmanned autonomous systems and

their applications in society. Section 2.1 explores the various unmanned autonomous

systems, and their applications to modern-day society are discussed in Sections 2.2

and 2.3. Section 2.4 gives the history of the quadcopter aerial robot, as well as quad-

copter basic principles of operation and accompanying challenges. Finally, Section 2.5

explains aerial-terrestrial hybrid robots and reviews previous hybrid aerial-terrestrial

robotic systems.

2.1 Unmanned Autonomous Systems (UAS)

Research in unmanned robots has increased rapidly since the invention of piloted

aircraft and machinery. By eliminating a human pilot from the system, unmanned

autonomous systems (UAS) can perform tasks that are possibly dangerous, undesir-

able, or difficult for a human operator to perform. Additionally, since UAS do not

require a human pilot, designers are able to reduce system mass, size, and complexity,

thereby increasing overall efficiency. UAS are classified by their operating medium.

For example, autonomous systems that operate on the ground are defined as un-

manned ground vehicles (UGV), systems that fly as unmanned aerial vehicles (UAV),

and systems that operate in aqueous environments are classified as autonomous un-
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derwater vehicles (AUV). Unmanned autonomous systems, when applied to industries

such as agriculture, transportation, homeland security, and defense, can provide sig-

nificant contributions to society.

2.1.1 Autonomy

An important differentiation between unmanned autonomous systems and traditional

hobby-like radio controlled systems is autonomy. That is, UAS are capable of execut-

ing tasks independently without user input, whereas radio controlled systems have

the obvious restriction that a remote pilot must control all aspects of radio controlled

system operation. Unmanned autonomous systems drastically reduce the need for

user input and can allow a single operator to control a fleet of UAS with high level

guidance, increasing the system throughput.

2.2 Unmanned Ground Vehicles (UGV)

Unmanned ground vehicles (UGV) are a classification of UAS that operate on the

ground in applications that may be dangerous, require stealth and small form fac-

tor, or endurance that can fatigue a human operator. Recently, the U.S. Armed

Forces announced a goal to have one third of its operational ground combat vehicles

unmanned by 2015, freeing up valuable human resources and reducing the inherent

risk of humans in the battlefield. One such example of unmanned ground combat

vehicles is the TerraMax UGV by Oshkosh Defense, shown in Fig. 2.1(a), which can

be controlled remotely or programmed to lead or follow a manned vehicle in com-

bat scenarios [11]. The same company has developed a plug-and-play system, shown

in Fig. 2.1(c) that can transform traditional tactical vehicles into UGVs. Civilian

applications for UGVs include autonomous automobiles, a field that began in the
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1980’s when Carnegie Mellon University presented its Navlab vehicles that operated

autonomously in structured environments [12] and when the University of the Bun-

deswehr Munich showed early results in high-speed motorway driving [13]. Recently,

tech giant Google has developed vehicles that can drive themselves. The vehicles,

shown in Fig. 2.1(b) use artificial-intelligence software that can sense anything near

the car and mimic the decisions made by a human driver [14]. Autonomous con-

trolled vehicles react faster than humans, have 360-degree perception and do not get

distracted, sleepy or intoxicated. This technology could drastically increase the ca-

pacity of roads by allowing cars to drive safely while closer together, and because the

robot cars would eventually be less likely to crash, they could be built lighter, thus

reducing fuel consumption.

2.3 Unmanned Aerial Vehicles (UAV)

Currently, general applications of unmanned aerial vehicles (UAV) utilizing existing

aircraft include freight, human transportation, surveillance, and military applica-

tions. Unmanned aerial vehicles have the additional potential of impacting society

in fields such as agriculture, law enforcement, mapping, and logistics due to their

highly configurable nature. During the past decade, UAV development has increased

rapidly and has resulted in fully controllable systems capable of surveillance and var-

ious military applications. One such example of this type of UAV is the Predator

by General Atomics, shown in Fig. 2.1(d), which can be controlled from a remote

ground control station (GCS) to identify potential targets and engage a target of

interest with a laser guided missile [15]. The recently developed ScanEagle by Instil,

shown in Fig. 2.1(e), is a smaller example of commercially available UAV that is

capable of automatically tracking a target and relaying encrypted digital video and

command and control datalinks over 55 nautical miles to a GCS [16]. The ScanEagle
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has been continuously deployed since 2005 in land and maritime environments with

a 99 percent mission success rate. AeroVironment has developed a small 4.5 foot

wingspan, hand-launchable UAS called the Raven, that can be operated manually

or pre-programmed for an autonomous surveillance mission via GPS waypoints [17].

The Raven, shown in Fig. 2.1(f), is the most widely operated UAV in the world to-

day. Robust technology, longer operating life, and enhanced sensing capabilities have

enabled a greater use of small UAVs. In addition, improved communication technolo-

gies has allowed operation of UAVs from far away ground control stations. Advanced

systems have expanded military goals to include possibilities such as UAVs delivering

cargo and supplies to soldiers on the battlefield in remote locations or performing

complex search and rescue missions.
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Figure 2.1: State of the art in UGV and UAV systems. a) Oshkosh TerraMax UGV
capable of waypoint, lead, and follow tracking. b) Prototype Google UGV for civilian
use. c) Plug-and-play UGV TerraMax unit for implementation in any tactical vehicle
for military use. d) Predator UAV by General Atomics, Inc. engaging a target. e)
Insitu ScanEagle surveillance UAV. f) AeroVironment hand-launchable Raven UAV
for surveillance applications.
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2.3.1 Fixed-Wing vs. Rotor-Driven Aircraft

Although the broad category of UAS are highly capable, different aircraft structures

are better suited for certain applications. One such distinction is between fixed-

wing and rotor-driven aircraft. Fixed-wing aircraft generally have one fixed airfoil-

like geometry with a separate propulsion actuator that propels the aircraft forward.

Airflow over the wings of a fixed-wing aircraft helps create lift that elevates the

aircraft. In contrast, rotor-driven aircraft obtain lift by direct actuation of a rotor

perpendicular to the earth. In some applications, this distinction is negligible, but

rotor-driven aircraft are much more capable in applications that require vertical take-

off and landing (VTOL), or the ability to hover in place. Rotor-driven VTOL aircraft,

such as multi-rotor helicopters, do not require long runways for take-off or landing

and are capable of hovering and flying at low velocities, making them well suited for

urban applications.

2.3.2 Aircraft Size

UAS size has a direct impact on the types of tasks that can be performed; larger

UAS can travel long distances and have a high payload capacity, but are restricted

in their operating environments by their large size. Smaller UAS are more capable

of urban tasks, such as indoor navigation, but their small size and limited payload

decrease the overall system efficiency. An especially miniature subset of UAS, called

micro air vehicles, is defined by systems smaller than 50 cm in wingspan and are

capable of maneuvering in very tight spaces such as inspection ducts, damaged build-

ings, and environmental sensing in inaccessible environments. Due to their small size

and flexible capabilities, micro scale UAS are especially attractive in the research

community [18].
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Figure 2.2: Various size UAVs and their applications such as military target engage-
ment, surveillance, mapping, and entertainment with respective masses ranging from
15,000 lb to 1.5 lb.

2.3.3 Summary of UAS

With advances in low-cost, reliable, and safe UAS, there exists a strong desire to com-

mercialize this technology for uses that include monitoring agricultural crop health

and harvesting, consumer shipping and delivery services, public transportation, in-

spection of infrastructure like bridges, pipelines, and roadways, search and rescue,

oceanic and atmospheric observation, law enforcement, environmental sensing, and

yet unrealized applications. Many commercial industries can benefit highly from

UAS for tasks that require high-precision, long duration, or repetitive tasks, freeing

up valuable human resources for more advanced contributions in the workplace.

2.4 Quadcopter Aerial Robots

As interest in micro scale UAS increases, quadcopter UAVs have consumed much of

the research, and quadcopter capabilities have been compared favorably against other
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UAS [19]. Unlike traditional helicopters where a rear rudder is necessary to counteract

the main propeller moment, the quadcopter is designed to exhibit no moment at

the center of mass during hover, simplifying the system complexity. Additionally,

quadcopters are driven by four independent actuators — increasing the force of a

single actuator independently enables aggressive and agile maneuvers. For example,

three general configurations of motor speeds can influence the roll, pitch, and yaw

of the quadcopter as shown in Fig. 2.4. In the simplest of cases, a designer can

assume that each rotational degree of freedom is uncoupled, drastically simplifying

the dynamics and control required for various autonomous commands. A typical

commercially-available quadcopter is shown in Fig. 2.3.

Figure 2.3: Commercially available quadcopter from 3D Robotics with onboard GPS,
sonar sensor, barometer, and external video camera.

2.4.1 Quadcopter Challenges

While the quadcopter platform is very attractive due to its relatively low complexity

and high capability compared to traditional helicopters, the system does present some

challenges. For example, quadcopters are an example of an underactuated system.

That is, the system does not contain actuators for every degree of freedom (6-DOF,

4 control inputs). In addition to underactuation, the quadcopter is a dynamically
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unstable system and without active control would not be able to fly. Controller design

for quadcopter systems is inherently nonlinear and is usually only valid for a small

regime of orientation. Even though quadcopter platforms present unique challenges,

the combination of vertical take-off and landing, hover capability, and system agility

makes quadcopter aerial robots an excellent choice for aerial locomotion.

Figure 2.4: Quadcopter system and actuation principles given by a) thrust and mo-
ment from angular velocity of actuators. b) Roll action is achieved by increasing the
angular velocity of motor 4 while decreasing the angular velocity of motor 3. c) Pitch
action is achieved by increasing the angular velocity of motor 2 while decreasing the
angular velocity of motor 1. d) Yaw action is achieved by increasing the angular
velocity of motor pair 1 and 2 while decreasing that of motor pair 3 and 4.

2.5 Review of Aerial-Terrestrial Hybrid Robotics

Research and development of hybrid aerial terrestrial robotics is limited. Most aerial

terrestrial robots are composed of separate aerial and terrestrial actuators that are

attached together to form a hybrid system. For example, the micro air-land vehi-

cle (MALV) II shown in Fig. 2.5(a) is a fixed wing propeller driven aerial vehicle
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with attached DC motor wheel-leg drive system for terrestrial locomotion [20,21]. A

hexapedal winged robot equipped with flapping wings, shown in Fig. 2.5(b), has been

developed to increase the overall running speed of a terrestrial robot [22], with future

possibility of a fully functional flying and crawling robot. An ultra-light jumping and

gliding robot capable of jumping 27 times its own height, shown in Fig. 2.5(c), has

been developed to mimic a desert locust [23].

Figure 2.5: Existing hybrid aerial-terrestrial designs. a) Micro air-land vehicle, b)
hexapedal flapping winged robot, c)ultra-light jumping and gliding robot d) HYTAQ
robot.

Recently, a hybrid quadcopter system was developed and translates downward

thrust from the propellers into forward walking motion of legs, but the speed of the

design was limited by the slow-acting shape memory alloy actuators [24]. The same

group developed a novel cylindrical quadcopter-based aerial-terrestrial robot [25],

shown in Fig. 2.5(d), that is capable of both efficient ground and aerial locomotion.

The novel cylindrical exoskeleton keeps the system stable during ground locomotion,

but the robot is unable to access tight spaces such as pipes and air ducts due to its

geometry, turning method, and size.
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2.6 Summary

This chapter introduced unmanned autonomous systems and their applications to

modern-day society, reviewed the distinction between various UAS and their appli-

cations, introduced quadcopter aerial robots, addressed quadcopter challenges, and

reviewed previous aerial-terrestrial robotic systems. The following chapter focuses on

the design of a novel spherical aerial-terrestrial robot.
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Chapter 3

ATR System Design and

Fabrication

For urban applications, the ATR is designed to be as small and lightweight as possible.

An advantage of a small, ultra-lightweight platform is the ability to access tight spaces

such as pipes and air ducts for applications such as inspection, surveillance, mapping,

and search and rescue. The ATR’s spherical exoskeleton geometry enables the robot to

perform turns of varying radii while simultaneously rolling over the ground, expanding

the range of possible trajectories over previous designs that are only able to roll

straight and pivot-turn [25]. While the novel spherical design enhances mobility, it is

also accompanied by numerous challenges, namely stability.

The ATR is designed so that the robot is capable of righting itself from any

orientation. The robot can achieve passive stability by positioning itself on the flat

surfaces located on the sides of the exoskeleton. The spherical exoskeleton is designed

to offer a variety of turning radii for advanced trajectories. An additional challenge

in the design of the ATR is the limited payload of the inner flying platform. The

ATR’s spherical exoskeleton is designed to be as light as possible while protecting

the flying platform from impact and providing sufficient rigidity for efficient ground
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locomotion.

The basic design of the ATR is shown Figure 3.1(a). The system consists of a

hover-capable flying robotic platform surrounded by an outer lightweight spherical

exoskeleton and rotating support axle. The ATR’s exoskeleton, when in terrestrial

mode [Fig. 3.1(b)], rotates about the platform’s central axis on its outer exoskeleton.

The flat surface on either end of the axle creates a perching surface, as illustrated in

Fig. 3.1(c). By orienting the ATR so that it sits on either side, the platform is able

to rest in a stable position.

Figure 3.1: Spherical aerial terrestrial robot: (a)key components, (b)rolling mode,
and (c)perching mode.
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3.1 Quadcopter Platform Design

The quadcopter platform, shown in Fig. 3.2, used to create the ATR has a footprint

of approximately 135 mm by 135 mm, measured along the platform arms from one

rotor tip to the opposite rotor tip. The quadcopter and battery pack (1S1P 350 mAH

lithium-polymer battery) weigh 28.7 g combined, and at full throttle, the quadcopter

can lift an additional 16.9 g. The complete ATR concept, which consists of the

quadcopter, axle, bearings, and lightweight steel exoskeleton, has a combined weight

of 35.24 g allowing for a payload capacity of 10.36 g. Additional payload capacity

can be achieved by design optimization, minimizing the weight of components, and

increasing the number or size of motors and rotors.

Figure 3.2: Micro quadcopter used to create the ATR.

The body of the quadcopter is fabricated from a single printed circuit board and

carbon fiber arms (4.5 g) which significantly reduces the overall mass, with surface-
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mount components that include a microcontroller (ATmega328P), three-axis gyro and

accelerometer (MPU-6050), and MOSFET’s for driving the motors. The platform is

equipped with a 2.4 GHz XBee radio receiver for communication with a ground control

station, and four small (7 mm x 17 mm) coreless brushed DC motors.

Compared to larger quadcopter systems where brushless motors are commonly

used, the brushed DC motors used in the design do not require sophisticated electronic

speed controllers, significantly reducing weight. However, the trade off in this case

is longevity, as brushed motors tend to wear more quickly during use compared to

brushless motors. The quadcopter uses an InvenSense MPU-6050 six-axis inertial

measurement unit (IMU) that fuses raw accelerometer and gyroscope data to report

the attitude angles, ϕ, θ, ψ, at 100 Hz for attitude stabilization in both modes of

locomotion. The micro-quadcopter specifications are given in Table 3.1.

Table 3.1: Micro-quadcopter specifications

Component Specification

Microcontroller ATmega328P, 32 KB flash memory

IMU MPU-6050 3 axis Gyro and Accelerometer, 100Hz

Communication 2.4 GHz Xbee 1mW trace antenna, 50Hz

Microsoft Xbox Controller (User input)

Actuator Coreless brushed DC motor (2.71 g)

407 mN Thrust, 16.6 W

Battery 350 mAh Li-Po (9.35 g)

Propeller 45 mm

The programming interface is a Serial Peripheral Interface (SPI) and enables the

user to upload custom control software. Two way wireless communication between

the platform and ground control station (GCS) is through a custom developed graphic

user interface and Microsoft Xbox controller. Various buttons on the controller are

used for pre-programmed autonomous flight, and the analog joysticks can be used

for manual user input. A wireless link between the quadcopter and the GCS makes
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on-the-fly controller tuning and remote monitoring of attitude, control effort, and

battery voltage possible.

3.2 Exoskeleton Design

The ATR is able to conserve considerable power in rolling mode compared to conven-

tional multirotor flying platforms. In initial work [25], the added mass of a protective

cage was minimal in comparison to the overall payload capacity and size of the robot,

but the added mass of the ATR’s spherical exoskeleton is similar in magnitude to

the mass and payload capacity of the quadcopter, and must be considered for ef-

ficiency purposes and impact on system dynamics. The spherical exoskeleton was

chosen to fit tightly around the quadcopter platform so that the robot can easily be

hand launched and is capable of maneuvering through tight indoor spaces. While a

diameter of 135 mm fulfills the design requirements, a larger sphere diameter of 152

mm (6 in) was chosen to protect the inner quadcopter and allow for compliance of

the sphere when bouncing or falling from heights. Each ring diameter is constrained

by the overall sphere diameter, D, and can be designed for a desired turn radius, rt

from the design angle, γ, as,

rt(γ1, γ2) =
sin γ2(cos γ2 − cos γ1)

sin γ1 − sin γ2
. (3.1)

The angle, γ, is measured from the b̂y axis to the intersection of the ring diameter dn

with the sphere, as shown in Fig. 3.3(b) and completely defines the turn radii when

accompanied by D. The designer is given freedom to choose γ1, γ2, and γ3 to achieve

various turn radii depending on which pair of rings the ATR rolls. For example, a

larger diameter ring can be used for long, sweeping maneuvers and smooth transition

to straight rolling, or a smaller diameter ring can be used to maneuver in tighter



20

Figure 3.3: Spherical exoskeleton design: (a) mode of operation, (b) design geometry,
and (c) turn radius corresponding to d1, d2, d3 for varying γ.

constrained spaces. In Fig. 3.3(c), a range of possible d1 is chosen to give a turn

radius 32 cm < rt1 < 48 cm and from the resulting range of d1 values, Eq. (3.1)

and Fig. 3.3(c) the designer can determine proper ranges for d2, and d3 to satisfy

design requirements. For this design, rt1 = 32.1 cm, rt2 = 17 cm, and rt3 = 6 cm are

chosen to give a wide range of possible turning radii. It is important to note that the

diameter of each ring also influences the overall mass of the exoskeleton quadratically

by,

mn =
ρwπ

2d2ndw
4

, (3.2)
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where ρw and dw are the ring material density and diameter, dn is the ring diameter,

and mn is the ring mass. The designer must take care to design an exoskeleton

that meets both the terrestrial maneuverability requirements while still satisfying the

requirements for aerial flight. Due to extreme payload limitations of approximately

17 g, the exoskeleton is designed to be as light as possible, while still allowing the

ATR to fall and tumble from heights. Additionally, the steel exoskeleton is designed

with a degree of compliance that allows elastic deformation of the cage during impact,

preventing damage to the robot.

3.3 Fabrication

Since the ATR has an extremely limited payload, the spherical exoskeleton was de-

signed to be as light as possible. Various materials were considered to fulfill the

design requirements, and are shown in Fig. 3.5, such as: 3D Printed Polylactic Acid

(PLA), carbon fiber composite, titanium wire, and various diameters of spring steel

wire. The difficulties in working with tough to join materials like titanium and com-

plex molds for composite fabrication prevented quick design iteration, and ultimately,

spring steel wire was chosen for the design due to its relatively easy workability and

resulting lightweight exoskeleton (6.54 g as built). It is noted that these alternate

materials can yield a lighter weight exoskeleton, but the steel wire design satisfies

payload restrictions.

The exoskeleton of the ATR is fabricated from 0.020” diameter steel spring wire,

commonly referred to as music wire. The form shown in Fig. 3.4(a) used for the

concentric and orthogonal wire rings was constructed by inscribing grooves into a

6 inch polypropylene half-sphere on a horizontal lathe. The grooves serve as a fixture

for the steel rings during construction and ensure that the finished ATR is perfectly

spherical, resulting in smooth terrestrial locomotion. After constructing the mold,
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Figure 3.4: Fabrication of the spherical exoskeleton: (a) completed half sphere on
polypropylene mold, (b) structural solder joining the structure, (c) combining of
completed half spheres, and (d) completed ATR with carbon fiber axle, low-friction
Delrin journal and micro-quadcopter.

wire bands were sized on the mold, sanded to remove surface contamination and

oxidization, cleaned with a solvent, and then fluxed and soldered to create a loop as

shown in Fig. 3.4(b). The soldered joint was then tightly wrapped with strands of

thin copper wire, fluxed, and soldered once again to improve the joint integrity to

ensure the ATR does not break on impact. The completed sphere halves shown in

Fig. 3.4(c) were joined with solder at the central ring of the right half, completing

the exoskeleton.
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The quadcopter mass center was designed to coincide with the rotation axle of

the ATR for balanced rotation about the b̂y axis and a neutral inactive position. In

previous work, a similar design includes a mass center offset that guarantees stability

at rest [25]. Since the inertia of the quadcopter used for the ATR is small compared

to the motor pitching moment, the quadcopter can be easily righted at the beginning

of operation from any orientation. The axle is designed to be as light as possible

while firmly grasping and preventing any rotation of the quadcopter fuselage. Previ-

ous designs used a 3D printed PLA plastic axle, but low-rigidity and misalignment

increased drag in the bearing. The new bearing design uses a rigid 1
8
inch hollow car-

bon fiber shaft fixed to the exoskeleton. The quadcopter is then affixed to a Delrin®

acetal journal shown in Fig. 3.4(d). The axle extends the diameter of the exoskeleton

and improves the rigidity of the ATR while maintaining proper alignment for the

micro-quadcopter to rotate in the exoskeleton.
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Figure 3.5: Exoskeleton design iterations: (a)3D printed PLA, (b)lightweight 3D
printed PLA (c)carbon fiber composite , (d)titanium spring wire (e)steel welding
wire 0.30 in diameter, and (f)0.20 in spring steel wire (music wire).
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3.4 Control Hardware and Software

3.4.1 Quadcopter Electronics

The micro-quadcopter used in this design is actuated by small (7 mm x 17 mm)

brushed DC motors. The motors are driven by an 8 kHz pulse-width modulated

3.3 V signal that switches a metal-oxide field-effect transistor (FET) to control the

motor drive-voltage. The quadcopter is also fitted with two light emitting diodes

(LED) that allow the user to program indicators such as whether the platform is

enabled or disabled. The electronics schematic is shown in Fig. 3.6.

Figure 3.6: Circuit diagram for the micro-quadcopter platform with Wireless XBee
radio
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3.4.2 Wireless Communication

The ATR is capable of wireless serial communication at 50 HZ with a fitted 2.4 GHz

XBee radio. This system was chosen due to its high reliability, low power, robustness,

and ease of interfacing. Individual registers are set and the firmware was slightly

modified in order to obtain communication rate operation at 57600 baud, interfacing

over a serial line and minimal delay.

A custom graphic user interface (GUI), shown in Fig. 3.7, was developed to send

autonomous tasks, or joystick commands to the ATR. The user is also able to adjust

controller gains, switch between ground and aerial control modes, clear accumulated

controller errors, and monitor the system attitude. The GUI was developed in MAT-

LAB, which allows trajectories and motor commands to be easily sent to the ATR

from simulations in Simulink.

3.4.3 Inertial Measurement Unit

The development of fast, accurate, and affordable solid state accelerometers, initially

spurred by consumer electronics like smart phones, has been instrumental in the de-

velopment of inertial measurement units (IMU) for quadcopters. For example, the

IMU used in this design can deliver orientation and acceleration data at 100 Hz for

stabilization and attitude measurement. The IMU has two primary sensors for atti-

tude control: a 3-axis accelerometer that detects accelerations and a 3-axis gyroscope

for determining angular rates. This combination allows for real-time measurement

of the angular rates, as well as the accelerations that the quadcopter experiences.

InvenSenses Digital Motion Processor (DMP) uses these sensors to provide fast and

accurate attitude data such as roll, pitch and yaw. The MPU-6050 communicates with

the ATmega328p using the I2C bus running at 400 KHz allowing for fast retrieval of

data from the DMP.
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Figure 3.7: Custom designed graphic user interface with options for joystick input
and autonomous commands. The ground control station communicates with the ATR
at 50 Hz via wireless 2.4 GHz XBee radio.

3.4.4 Digital PID Control

The focus of controller synthesis for the ATR is stabilization of each orientation

angle ϕ, θ, and ψ. Once the attitude of the robot is controlled, higher level position

controllers can be implemented for rate control, object avoidance, and trajectory

tracking with the use of additional sensors such as motion capture systems [26], optic

flow [27], sonar [28], LIDAR [29], and barometric sensors.

The control architecture used in this work is shown in Fig. 3.8 and consists

of an inertial measurement unit sensor and cascaded discrete proportional-integral-
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Figure 3.8: Attitude controller design for stabilization of the robot orientation, ϕ, θ,
ψ.

derivative controller operating at 100 Hz. A base throttle command is used to control

the ATR’s z height in open loop and distributed to each motor. Each controller effort

for the respective orientation angles is either added or subtracted from the respective

motor. For example, if a positive correction in pitch angle is desired, the angular

velocity of M1 is increased while that of M2 is decreased based on the controller

effort.

3.5 Summary

this chapter presented the ATR design, including the lightweight spherical exoskele-

ton, micro quadcopter, control hardware and software. Additionally, system fabrica-

tion details are discussed. The spherical exoskeleton is designed to enable the robot

perform various radii turns while rolling and is lightweight enough so that the robot
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can still fly. The control hardware and software allows for wireless communication,

control, and parameter tuning. A digital PID controller is used for attitude stabiliza-

tion and is implemented at 100 Hz.
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Chapter 4

System Modeling

Developing the governing equations of motion is an essential aspect for design and

control of the ATR. The following section presents a model that captures the aerial

and terrestrial locomotion of the ATR.

4.1 Reference Frames

Reference frames are introduced to represent and measure properties such as position,

orientation, and velocity of a rigid body as shown in Fig. 4.1, and are defined by a

basis, or linearly independent subset of a vector field, F, that spans the dimension of

the frame. The motion of a particle moving in space is described by giving the location

of the particle at each instant of time, relative to an inertial Cartesian coordinate

frame. Specifically, one can choose a set of three orthogonal axes and specify the

particles location using the triple (êx, êy, êz) ∈ R3 , where each coordinate gives the

projection of the particles location onto the corresponding axis. The trajectory of

the particle is represented by the parameterized curve p(t) = (x(t), y(t), z(t)) ∈ R3.

An inertial reference frame E ∈ R3 can be defined as a particular reference frame

that has a constant velocity and does not accelerate. A Newtonian reference frame
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Figure 4.1: Rigid body in space with body-fixed accelerating reference frame B. An
additional reference frame, E, is defined and is inertial. The velocity of the body can
be expressed in both reference frames B, and E, such that a transformation between
B and E exists for all orientations.

is analogous to the inertial reference frame which satisfies Newton’s First Law. That

is, the motion of a particle not subject to any external forces is in a straight line at

a constant velocity. The inertial reference frame, E, used for this work is assumed

to be fixed in earth at a home location. The êx axis is directed north, êy is directed

east, and êz is directed to the center of earth. For the scope of this work, Earth’s

curvature is negligible. An additional non-inertial, accelerating reference frame, B̂

fixed to the rigid body can be formed by b̂x, b̂y, b̂z, directed forward, right, and

downward perpendicular to the body.
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4.2 Coordinate Transformation

A transformation exists to express a vector in any reference frame and can be repre-

sented in various methods including Euler rotation angles, quaternion transformation,

and angle-axis representation. By introducing an additional reference frame for rigid-

body dynamics, some vector quantities may be easier to represent in another frame.

For example, in Fig. 4.1 the velocity of the rigid body can be represented in B and

E as,
⇀
v{B} = ab̂x, (4.1)

⇀
v{B} = cêx + dêx + f êz, (4.2)

where the subscript {B} indicates the reference frame of interest. Representing

⇀
v{B} in B is much simpler than in E because

⇀
v{B} consists of only one component

rather than three. This representation allows for more direct and less computation-

ally demanding vector operations and the result can easily be transformed to E if

necessary.

4.2.1 Euler Rotation Matrix

Considering the right hand coordinate system, the transformation between B and E

in Fig. 4.1, can be represented by three single rotations:

R(x, ϕ) Rotation about the b̂x axis

R(x, ϕ) =


1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)

 (4.3)
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R(y, θ) Rotation about the b̂y axis

R(y, θ) =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 (4.4)

R(z, ψ) Rotation about the b̂z axis

R(z, ψ) =


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (4.5)

The complete rotation matrix to represent a rigid body parameterized by angles ϕ,

θ, ψ is given by the product of Eqs. (4.3), (4.4), (4.5), given by,

R(ϕ, θ, ψ) =


c(ϕ)c(θ) s(θ)c(ψ)s(ϕ)− s(ψ)c(ϕ) s(ϕ)s(ψ) + c(ϕ)s(θ)c(ψ)

s(ψ)c(θ) c(ψ)c(ϕ) + s(ψ)s(θ)s(ϕ) c(ϕ)s(ψ)s(θ)− s(ϕ)c(ψ)

−s(θ) s(ϕ)c(θ) c(ϕ)c(θ)

 , (4.6)

where the notation s(θ) = sin(θ) While the transformation in Eq. (4.6) provides a

relatively simple parametrization, singularities in the rotation matrix occur at R = I,

the identity rotation given by R(γ, 0,−γ) for example. This singularity refers to a lack

of existence of a global solution to determine the rotation angles from the physical

rotation, so configurations of this nature are inherently unsolvable with the Euler

rotation matrix method.
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4.2.2 Quaternion Transformation

Unlike Euler angles, quaternions give a global parametrization of a rotation in SO(3).

The quaternion is a hyper-complex number consisting of a three element vector defin-

ing the axis perpendicular to rotation and a scalar quantity defining the magnitude

of the rotation. Formally, the quaternion is given by,

Q = q0 + q1i+ q2j+ q3k, (4.7)

or alternatively in compact form as Q = (q0,
⇀
q) where q0 is the scalar component and

⇀
q = (q1, q2, q3) is the vector component with q0 ∈ R and

⇀
q ∈ R3. Multiplication in

the quaternion space is both distributive and associative, but not commutative and

satisfies the relations,

ai = ia, aj = ja, ak = ka, a ∈ R,

i · i = j · j = k · k = −1, (4.8)

i · j = −j · i = k, j · k = −k · j = i, k · i = −i · k = j.

The conjugate of a quaternion is given by Q∗ = (q0,−
⇀
q) and the magnitude of a

quaternion satisfies,

∥Q∥2 = Q ·Q∗ = q0
2 + q1

2 + q2
2 + q3

2. (4.9)

The quaternion product between two quaternions Q and P is given by the inner and

cross products between the vectors and has the form,

Q⊗ P = (q0p0 −
⇀
q · ⇀
p, q0

⇀
p+ p0

⇀
q +

⇀
q × ⇀

p). (4.10)
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If a quaternion is a unit quaternion given by |q|
⇀
q
it can be used as a rotation operator;

however, the transformation is not built up as one quaternion product, but two - the

normal and its conjugate, given by,

⇀
v ′ = Q⊗

0
⇀
v

⊗Q∗ (4.11)

Additionally, if P represents one rotation and Q represents an additional rotation,

the quaternion product of P and Q, P ⊗Q, represents the combined rotation, making

complex rotations simply quaternion products.

The rotation in Eq. (4.11) can be configured to represent rotations about the

principle axes by replacing
⇀
v with the respective axes and is given by,

R(x, ϕ) = Q⊗



0

1

0

0


⊗Q∗ =


q0

2 + q1
2 − q2

2 − q3
2

2(q1q2 + q0q3)

2(q1q3 − q0q2)

 (4.12)

R(y, θ) = Q⊗



0

0

1

0


⊗Q∗ =


2(q1q2 − q0q3)

q0
2 − q1

2 + q2
2 − q3

2

2(q2q3 + q0q1)

 (4.13)

R(z, ψ) = Q⊗



0

0

0

1


⊗Q∗ =


2(q1q3 + q0q2)

2(q2q3 − q0q1)

q0
2 − q1

2 − q2
2 + q3

2

 (4.14)

Since the group structure for quaternions directly corresponds to that of rotations,
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quaternions provide an efficient representation for rotations which do not suffer from

singularities.

4.3 Vector Derivatives in Two Reference Frames

Referring to Fig. 4.1, if E and B are any two reference frames, the first time-derivative

of any vector
⇀
v in B and E are related to each other by,

d
⇀
v

dt {E}
=
dvi
dt
b̂i + vi

db̂i
dt {E}

,

=
d
⇀
v

dt {B}
+ vi

⇀
ω{B} × b̂i,

=
d
⇀
v

dt {B}
+

⇀
ω{B} ×

⇀
v,

(4.15)

with b̂i = b̂x, b̂y, b̂z as the set of mutually perpendicular unit vectors that define the

basis for reference frame B. Equation (4.15) enables one to find the time derivative

of
⇀
v in E without having to resolve the vector into components parallel to the axes

defining the reference frame E.

4.4 Newton’s Second Law in Body Coordinates

In the case of Newton’s second Law, the time rate of change of a particle’s linear

momentum is equal to the net sum of all the forces acting on the particle, i.e.,

⇀

f =
d

dt
(m

⇀
v). (4.16)
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Assuming that the particle’s mass is time-invariant, and
⇀
v is expressed in the body

coordinates b̂x, b̂y, b̂z then,

⇀

f = m
d
⇀
v

dt
,

⇀

fB = m
d
⇀
v

dt {B}
+m

⇀
ω{B} ×

⇀
v,

= m
⇀̇
v{B} +

⇀
ω{B} ×m

⇀
v.

(4.17)

Equation (4.17) is Newton’s Second Law in body coordinates. When
⇀
v is represented

in the non-accelerating frame E, Eq. (4.17) reduces to a common form,

⇀

f{E} = m
⇀̇
v{E} +

⇀
ω{B} ×m

⇀
v,

= m
⇀̇
v{E} + 0×m

⇀
v,

= m
⇀̇
v{E}.

(4.18)

4.5 Euler’s Second Law in Body Coordinates

Similar to Newton’s Second Law, presented in Eq. (4.19), the sum of applied torques

on a rigid body is equal to the time rate of change of the body’s central angular

momentum,
⇀

H, is,

⇀
τ =

d

dt

⇀

H, (4.19)

where,
⇀

H = Ixωxb̂x + Iyωy b̂y + Izωz b̂z. (4.20)

Assuming that the body’s inertia is time-invariant, and
⇀
ω is expressed in the body

coordinates b̂x, b̂y, b̂z,

⇀
τ{B} =

d
⇀

H

dt {B}
+

⇀
ω{B} ×

⇀

H, (4.21)
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d
⇀

H

dt {B}
= Ixω̇xb̂x + Iyω̇y b̂y + Izω̇z b̂z, (4.22)

⇀
ω{B} ×

⇀

H =ωyωz(Iz − Iy)b̂x + ωxωz(Ix − Iz)b̂y

+ ωxωy(Iy − Ix)b̂z.

(4.23)

Equation (4.22) is Euler’s Second Law represented in body coordinates. When
⇀

H is

represented in a fixed inertial frame, Eq. (4.22) reduces to a common form,

⇀
τ{E} =

d
⇀

H

dt {E}
+ 0 = I

⇀̇
ω{B}. (4.24)

4.6 Newton-Euler Equations

Equations (4.17) and (4.22) fully describe the translational and rotational dynamics

of a rigid body in space. A compact matrix representation of the Newton-Euler

equations is given by,

⇀

f{B}

⇀
τ{B}

 =

M 0

0 I


⇀̇
vcm{B}

⇀̇
ω{B}

+

⇀
ω{B} ×m

⇀
vcm{B}

⇀
ω{B} × I

⇀
ω{B}

 , (4.25)

where M ∈ R3, I ∈ R3are the mass and inertia matrix. The body’s linear and angular

accelerations
⇀̇
vcm{B} ,

⇀̇
ω{B}, external forces,

⇀

f{B}, and torques,
⇀
τ{B}, are defined in the

body frame.

4.7 Aerial Locomotion

The quadcopter can be approximated as a rigid body with six degrees of freedom in

the inertial frame. The position and attitude of the aircraft are given by (êx, êy, êz)

and (ϕ̂, θ̂, ψ̂), respectively. The general Newton-Euler Equation (4.25) can be applied
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Figure 4.2: Experimental micro-quadcopter platform with inertial reference frame
E, defined by êx, Northward, êy, Eastward, and êz, directed to the center of the

earth. The quadcopter body frame is defined by b̂x, forward, b̂y pointed right, and b̂z
downward.

to the ATR flying platform with minor modifications. First, it is assumed that the

quadcopter platform is symmetric about the b̂x and b̂y axis, resulting in a symmet-

ric and diagonal inertia matrix — no products of inertia exist, only three principle

moments of inertia. The exoskeleton is assumed to be uniform in inertia about each

principle axis, and only affects the inertia of the ATR system in the Iyy and Izz direc-

tion as the bearing friction is much smaller in magnitude compared to the actuator

action in aerial mode and the actuators do not have a direct impact on the rotation

of the exoskeleton in aerial mode. The body forces and torques from the actuators

are given by,
⇀

f{b} = [0, 0,−
4∑

i=1

Ti], (4.26)

⇀
τ{b} = [l(T4 − T3), l(T1 − T2), (M3 +M4 −M1 −M2)], (4.27)

where l is the quadcopter arm length. The motor thrust Ti and moment Mi are

dependent on the motor torque and moment constants kT , kM and are a quadratic
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function of the rotor angular velocity Ωi, i.e., [30]

⇀

Ti = −kTΩ2
i b̂z,

⇀

Mi = −kMΩ2
i b̂z. (4.28)

As shown in Fig. (4.2), the quadcopter can be represented in both the inertial reference

frame, E, and the quadcopter rigid body frame B. Note that the linear and angular

motions are coupled since the linear velocity in body coordinates depends on the

current orientation. Each rotor speed can be calculated for a desired orientation from

Eq. (4.26) and (4.27) and is given by,

⇀

Ω =



Ω1

Ω2

Ω3

Ω4


=



1 1 0 1

1 −1 0 1

1 0 −1 −1

1 0 1 −1





√
−mg
4kT√
τby
2lkT√
τbx
2lkT√
τbz
4kM


. (4.29)

Combining Eq. (4.25), (4.26), and (4.27) gives a representation of the dynamic equa-

tions of motion for the ATR in the body frame, B,

z̈ =
4∑

k=1

Ti
m

− gêz · b̂z, (4.30)

ϕ̈ =
1

Ixx
[kT l(Ω

2
4 − Ω2

3) + θ̇ψ̇(Iyy − Izz) +
4∑

k=1

JrkΩkθ̇ + Iszzψ̇α̇],

θ̈ =
1

Iyy
[kT l(Ω

2
1 − Ω2

2) + ϕ̇ψ̇(Izz − Ixx)−
4∑

k=1

JrkΩkϕ̇+ Isyy α̈],

ψ̈ =
1

Izz
[kM(Ω2

3 + Ω2
4 − Ω2

1 − Ω2
2) + ϕ̇θ̇(Ixx − Iyy) +

4∑
k=1

JrkΩ̇k + Isxxϕ̇α̇].
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where α̈ is the angular acceleration of the spherical exoskeleton, Jr is the rotor

inertia, and Ω1,2,3,4 are the individual motor angular velocities.

It is important to note that since the inertia of the exoskeleton and the inertia

of the quadcopter platform are similar in magnitude, the rotation, α, and inertia,

Is, of the exoskeleton can greatly affect aerial locomotive dynamics. The addition of

the exoskeleton does not increase the system inertia, I, uniformly. The Iyy and Izz

terms nearly double, while Ixx remains only that of the quadcopter, resulting non-

axisymmetric dynamics that are more difficult to control than traditional quadcopter

systems. The lightweight exoskeleton with inertia Is, provides an additional torque

on the ATR during flight if the exoskeleton is rotating after take-off at an angular

velocity of, α̇b̂y. Finally, it is noted that the effect of torques opposing the exoskeleton

angular momentum is reduced with increasing α̇, which can contribute positively to

the ATR’s ability to maintain a desired heading in aerial mode.

4.8 Terrestrial Locomotion

Rolling forward or backward can be achieved by orienting the micro-quadcopter in a

manner that provides a component of thrust along the horizontal direction (parallel

to the ground). A novelty of the ATR is its capability to turn while rolling in a

method similar to a railcar, where the ATR can position itself on its exoskeleton

rings of varying diameter in contact with the ground, causing the platform to turn in

a circular manner. Additionally, the ATR is capable of turning in place by creating a

moment imbalance between motors, analogous to yaw action in aerial mode. Perching,

as shown in Fig. 3.1(c), allows the ATR to rest in a passively stable state and is

accomplished by rotating the platform about its b̂x axis by ±90◦ onto one of the flat

ends of the sphere. These three configurations describe the gross behavior of the ATR

over the ground.
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Figure 4.3: The ATR system in terrestrial locomotion mode, powered by the brushed
motors propelling and directing the rolling exoskeleton. The ATR is capable of smooth
turning by positioning itself onto a set of its rings and rolling in a circular pattern.

Rolling

The dynamic equations presented in Eq. (4.30) apply specifically to aerial locomotion

and can generally be applied to the terrestrial locomotion with some considerations.

As shown in Fig. 4.3, the ATR must maintain a set-point pitch angle by increasing or

decreasing the angular velocity of motors 1 and 2 to achieve a desired pitch angle, θ,

resulting in a horizontal component of thrust for forward or reverse rolling motion. A

vertical configuration with θ = ±90◦ provides the most terrestrial thrust for rolling,

rotation about the b̂x axis becomes more difficult to control as it relies solely on the

moment produced by the motors, rather than the thrust, resulting in a possible loss

of control. This configuration also decreases the robot’s ability to roll about the b̂x
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axis, limiting its ability to roll and turn simultaneously. For these reasons and the

fact that small pitch angles such as θ = 5 − 10◦ provide sufficient thrust for quick

rolling locomotion at low overall thrust, an attitude constraint is formed that ensures

the robot remains in contact with the ground, and is given by,

4∑
k=1

kTΩ
2
i cos θ cosϕ−mg > z̈. (4.31)

The ground motion of the ATR is limited to rolling, sliding, or a combination

of the two. Consider straight line motion of the ATR, transitioning from aerial lo-

comotion to terrestrial locomotion with initial velocity,
⇀
v0, thrust,

⇀

Tx, and initial

angular velocity,
⇀̇
α0 = 0. Upon ground impact, the acceleration of the mass center

and angular acceleration of the sphere are,

⇀̇
vcm =

Tx
m
êx − µkgêz, (4.32)

α̈ =
µkmgri
Iyy

. (4.33)

It is important to note that friction from the ground acts immediately, starting to slow

the ATR down, bringing the exoskeleton into rotation. Pure rotation can only occur

when,
⇀
vcm = ri

⇀̇
α, where ri is the radius of the ring in contact with the ground and

⇀̇
α

is the angular velocity of the spherical exoskeleton. This relationship directly relates

the rotation of the spherical exoskeleton and the linear velocity of the robot, forming

a non-holonomic configuration constraint of pure rolling without slipping. Although

a majority of the ATR’s behavior follows the non-holonomic constraint, sliding and

twisting motion must be considered during normal operation. From Eq. (4.32), (4.33),

and the non-holonomic constraint, the impact condition of rolling or sliding along the

ground can be determined from the initial impact velocity,
⇀
v0, thrust,

⇀

T , friction

coefficient, µk, and contact radius, ri.



44

The journal bearing used in the design exhibits a torque that opposes the rotation

of the exoskeleton. This torque, τb, is primarily dependent on the contact surfaces,

quadcopter platform mass, exoskeleton angular velocity, α̇, bearing temperature, and

lubrication condition. A general expression for the opposing torque due to bearing

friction is given by,

⇀
τb = mgµb

D

2
b̂y, (4.34)

where µb is the coefficient of rolling friction for the bearing and D is the bearing

diameter. In practice, µk can vary up to an order of magnitude over the life of the

bearing, so care must be taken in the choice of materials for the bearing design.

Turning

The novelty of the ATR’s maneuverability in terrestrial locomotion mode lies in the

shape of the spherical exoskeleton. In addition to yawing the platform and spinning

about the b̂z axis, the robot is geometrically designed to turn via varying diameter

concentric rings, similar to how a solid axle train navigates turns on its track. An

actuation imbalance between motors 3 and 4, and corresponding robot roll angle, ϕ,

places the robot onto different sized sets of rings, and when the exoskeleton rolls, the

robot turns in a circular manner due to the smaller and larger path of each contact

ring. The platform turning radius, rt, from the inner contact ring is given by,

rt =
r2q

r1 − r2
, (4.35)

where r2, r1 are the smaller and larger diameters of contact rings and q is the distance

between rings as shown in Fig. 3.3. The ATR is equipped with three ring sets on either

side of the robot, making complex turns of varying radius possible. The ATR can
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position itself on the proper set of rings by rotating about its b̂x axis an amount,

ϕ = tan−1

(
r1 − r2
q

)
. (4.36)

For simplicity in modeling the terrestrial rolling and turning, and additional reference

frame is formed in the exoskeleton body frame. This frame is similar to the quadcopter

body frame, but is not influenced by the rolling or pitching of the quadcopter and

the b̂sx and b̂sy axes are coplanar with the êx and êy axes. The frame origin is at the

mass center of the system (center of the sphere) and coincides with the quadcopter

body frame. The forces and torques Tx,y,z, τx,y,z on the exoskeleton induced by the

quadcopter actuators can be obtained from a simple transformation in a variety of

methods outlined in 4.2. Assuming both rings are in contact with the ground during

turning, the forces and torques on the exoskeleton in the exoskeleton body frame are

given as,

ẍ =
1

m
[Tx − f1t − f2t], (4.37)

ÿ =
1

m
[Ty − f1n − f2n],

z̈ =
1

m
[−Tz +mg −N1 −N2],

ϕ̈ =
1

Ixx
[τx + r1f1n+ r2f2n], α̈ =

−1

Isyy
[r1f1t+ r2f2t+ τb],

Izzψ̈ =
1

Izz
[τz +

q

2
(f2t− f1t)],

where f1t, f2t, f1n, f2n are the ring tangent and normal frictional forces as shown in

Fig. 4.3, and N1, N2 are the normal forces in the êz direction. Terms in Eq. (4.30)

containing angular rates θ̇ and ϕ̇ are neglected in terrestrial analysis as the angular
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rates are minimal and do not appreciably impact terrestrial dynamics.

From Eq. (4.37) a relationship between the applied thrust, Tx, and the exoskeleton

angular acceleration, α̈, is given by,

α̈ =
τz + Txq(r2 − 0.5)− qτb

qIyy + Izz
r1+r2
2rt+

q
2
+mq(r2 − 1)

(
r1+r2

2

) , (4.38)

where r1 and r2 are the larger and smaller diameter rings of contact, q is the distance

between rings, rt is the turning radius, and τb is the bearing friction. The position and

orientation of the exoskeleton are fully described by the rotation of the exoskeleton,

α, and are parameterized in cartesian coordinates by,

x = x0 + rt sin

(
α(r1 + r2)

2rt +
q
2

)
, (4.39)

y = y0 − rt + rt cos

(
α(r1 + r2)

2rt +
q
2

)
,

ψ =
α(r1 + r2)

2rt +
q
2

.

Equations (4.37), (4.38), (4.39), describe the motion of the ATR when turning in

terrestrial mode.

Assuming the ATR can instantaneously change its roll angle, ϕ, complex paths

can be achieved by varying the ATR’s turn radius from each ring during rotation of

the exoskeleton. An additional method for turning is accomplished by actuation of

motor pairs 1 and 2, or 3 and 4, creating a net moment about the b̂z axis that causes

the robot to pivot about its point of contact on the ground. This action, combined

with the geometric constraint in Eqs. (4.36), (4.35), (4.37), and (4.39) allow the

designer to optimize the robot design for complex ground maneuvers that require

minimal effort.
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Perching

The ATR is able to achieve passive stability from any arbitrary orientation by ro-

tating about its center of mass to land on a perching surface located on either side

of the robot as shown in Fig. 4.4. The onboard inertial measurement unit provides

attitude measurement, and like stability control, a setpoint of ϕ = ±90◦ is achievable

by creating a net moment from an actuation imbalance of motor pair 3 and 4. Ad-

ditionally, actuating a single motor can position the ATR in perching mode provided

the moment provided by the motor, kM , is not too large to affect rotation about an-

other axis. The ATR can also be equipped with a grasping mechanism in the hollow

axle that enables the robot to grip onto vertical surfaces like netting, textiles, or even

small tree branches in future designs. This mechanism could possibly be actuated

with a shape memory alloy (SMA). Shape memory alloys are a special type of metal

usually comprised of a Nickel-Titanium alloy, that when heated deforms and when

cooled, returns to its original shape. For example, a simple shortening wire actuator

could be used to actuate a compliant grasping mechanism for perching, and when the

robot transitions to a locomotive mode, un-activated. Due to the ATR’s small mass,

future perching mechanisms need not be extremely sizable.
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Figure 4.4: The ATR system in perching mode. The system can achieve passive
stability by rolling onto the flat surfaces located at the ends of the robot.

4.9 Summary

This chapter presented the governing equations of motion of the ATR which are

utilized in the simulation and design of the robot. Preliminaries such as coordinate

transformations and the general Newton-Euler equations were discussed, followed by

an in-depth model of the system dynamics in both modes of locomotion.
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Chapter 5

Prototype Characterization

This chapter explains how the prototype ATR performance was measured to vali-

date the expected performance from design and modeling. In Section 5.1, the motor

constants kT , and km are determined and power consumption is measured over the

range of motor capabilities. In Section 5.2, the physical system parameters such as

mass and inertia are determined. In Section 5.3, the synthesized attitude controller

is tested and system performance is quantified.

5.1 Motor Characterization

A custom test stand, shown in Fig. 5.1 was fabricated to characterize the thrust,

power consumed, current draw, and battery voltage as a function of motor angular

velocity. The test stand is constructed from 6061 Aluminum in a manner to transfer

thrust from the motors to the gram scale without propeller interference.

The ”L” shaped design is constructed with equal length arms to eliminate geomet-

ric multiplication of force, and is fixed to the test bench with a low friction bearing.

Additionally, measurements are made in a quasi-static manner to reduce any fric-

tional effects from the bearing. A power resistor is fitted to the platform to measure
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Figure 5.1: Motor thrust characterization test stand with tachometer, power meter,
gram scale for thrust measurement, and serial communication link for data acquisition
and throttle commands to the platform.

current draw, and battery voltage is measured and transferred to the data-acquisition

computer via the microcontroller analog-to-digital port for power consumption cal-

culations. The test stand also measures propeller angular velocity with an infrared

emitter and detector circuit, shown in Fig. 5.1. When the detector is blocked from the

emitter by the propeller, a change in detector voltage is noted and propeller frequency

can be measured with an oscilloscope. The tachometer accurately and consistently

measures propeller angular velocity through the range of motor angular velocity in

this test (26,000 rpm). The thrust is characterized in Fig. 5.2(a) over the full range

of throttle inputs and can be used to determine the motor thrust constant, kT . The

motor moment constant, kM is characterized on a 6 axis force and torque transducer

(ATI Industrial Automation Nano17, not pictured).
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Figure 5.2: a) Motor thrust and b) moment constant characterization with second
order polynomial fit.

5.2 Physical System Characterization

The system inertias, masses, and physical parameters such as arm length and center

of mass are estimated using a reliable SolidWorks model and high-precision scale and

are reported in Table 5.1. It is important to note that while the quadcopter system

inertias in the b̂x and b̂y are nearly identical, the addition of the spherical exoskeleton

results in system inertias that are not equal, complicating the controller design as the

motion is highly coupled.
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Table 5.1: ATR system parameters

System Parameter Value

Micro-quadcopter mass 28.7 g

Spherical exoskeleton mass 6.54 g

Micro-quadcopter inertia [11944, 11998, 22480] g·mm2

Spherical exoskeleton inertia [17760, 16476, 17760] g·mm2

Rotor inertia 21.35 g·mm2

Micro-quadcopter arm length, l 40 mm

Motor thrust constant, kT 1.761x10−8 N·s
rad

Motor moment constant, kM 1.873x10−10 N·m·s
rad

Exoskeleton ring radii [r1,2,3,4] [75.0,68.6,44.8,16.5]

Exoskeleton ring spacing, q 30 mm

Bearing shaft diameter, D 0.125 in

Coefficient of bearing friction, µb 0.15

5.3 Controller Performance

A simulation of the system dynamics in closed loop is used to estimate initial gains

Kp, Ki, and Kd for each axis. To experimentally tune the gains, the quadcopter is

fitted to a constraining test stand that isolates each axis from any other movement,

and an iterative process is used on both the test stand and in-air flight for accept-

able controller performance. A step response is generated for the derived model and

compared to experimental results as shown in Fig. 5.3(a). The experimental plat-

form is fixed on a test stand with one degree of freedom about the pitch axis for

testing. While this method effectively isolates one axis for testing, the results are

not an exact representation of the flight dynamics as translation and orientation are

highly coupled. It is noted that the model does not address aerodynamic effects such

as propeller wash, drag, and rotor dynamics, which are known to have an impact



53

a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−40

−30

−20

−10

0

10

Time [s]

P
it
ch
 a
n
g
le
 [
d
eg
]

 

 

0 2 4 6 8 10 12 14
−20

−10

0

10

Time [s]

P
it
ch
 a
n
g
le
 [
d
eg
]

 

 

Desired

Actual

Model Predicted

b)

Desired

Actual

Model Predicted

Figure 5.3: Measured system response due to: a) Step response and b) input track-
ing. The solid green line represents the desired pitch angle, dashed line represents
the simulated model response, and the solid black line represents the experimental
response on 1-DOF test stand.

on overall system performance [31]. The platform’s ability to accurately track an

input is shown in Fig. 5.3(b), with results similar to the step response. The RMS

error for input tracking over a 15 second test is 1.47 percent. The controller integral

output contains a maximum saturation to prevent integral controller windup. The

error signal to the derivative portion of the controller is passed through a first order

low-pass filter with cutoff frequency 20Hz to help remove sharp spikes in the signal

from motor vibration and noise. The final controller gains are Kp = 0.26, Ki = 0.12,

and Kd = 0.04.
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Chapter 6

Simulation

Upon developing the governing equations of motion and performing the system char-

acterization, the system is simulated in MATLAB Simulink to validate the model

with experimental data and generate open-loop trajectories suitable for each mode

of transportation. The inputs to the model are the physical system parameters given

in Table 5.1, initial position, orientation, velocity, and angular velocity, controller

parameters, and desired orientation and altitude.

System Dynamics
Attitude Control

Position, Orientation

Velocity, Angular velocity

Initial Conditions

Physical System Parameters 

Desired Attitude 1
s

1
s Simulated Position

and Orientatin

Figure 6.1: Simulation block diagram.

The simulation is solved with the Bogacki-Shampine Formula (MATLAB ODE3)

at a fixed-step time interval of 0.01 seconds, which is identical to the sampling time
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of the microcontroller control software. A general schematic for simulation is given in

Fig. 6.1, and the detailed Simulink block diagram is given in Appendix C. Each block

in Fig. 6.1 is described by one or several MATLAB files and can be easily incorporated

into other simulators. The simulation starts with the initial state taken from the initial

condition block. The desired and actual position are input to the control block, which

generates the necessary motor outputs for attitude correction. The System dynamics

block receives the motor inputs and outputs the system accelerations ẍ, ÿ, z̈, ϕ̈, θ̈,

ψ̈. The system accelerations are then twice integrated with their respective initial

conditions to yield the system output. Separate simulations are developed for both

aerial and terrestrial locomotion, but final conditions from either model can easily

be used as initial conditions to the other model for simulations that include both

rolling and flying. The system positions, orientations, velocities, and accelerations

are recorded for use in animations of the simulation for easy visualization of the

system dynamics.

For example, in Fig. 6.2 the ATR is simulated to maintain a setpoint pitch angle

and roll across the ground for a distance and then commanded to take off into aerial

mode.

Figure 6.2: Simulation of the ATR rolling on the ground and transitioning to aerial
mode.

Similarly, the ATR can be simulated to take-off vertically, fly forward, and land, as
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shown in Fig. 6.3. For the purpose of demonstration, the ATR provides a correctional

thrust to help eliminate its initial velocity before landing and rolling.

Figure 6.3: Simulation of the ATR performing a vertical take-off, flying forward,
correcting its angle to minimize its velocity, and rolling on the ground after landing.

Additionally, a path for complex terrestrial locomotion or aerial flight into a small

opening, shown in Fig. 6.4 can be simulated. A practical application of this type of

motion is a situation where the ATR must interrogate a target on the ground and

then fly to another target located in a hard to reach space, like an air duct.

6.1 Summary

The simulation results, namely required motor angular velocities and system orien-

tation, can be recorded and sent to the experimental ATR for open loop trajectory

generation.
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Figure 6.4: Simulation of the ATR rolling on the ground to maneuver through obsta-
cles and then transitioning to flying mode through a small opening.
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Chapter 7

Experimental Results and

Discussion

In this chapter, the experimental results of the ATR prototype in both aerial and

terrestrial mode are presented. Using the simulation results from Chapter 6, open loop

trajectories are tested for both modes of locomotion. The ATR is shown to require

significantly less power in terrestrial mode than in flying mode. When compared to a

traditional quadcopter platform, the ATR is only slightly less efficient in aerial mode.

7.1 Autonomous Hover

The fabricated ATR was evaluated in an indoor environment with foam ground and

netted walls to protect the ATR from impact. The ATR was given an initial motor

input pulse for take-off, followed by a constant motor input required for hover. The

ATR prototype is capable of hover at 72 percent throttle and 14.3 W power demand.

It is important to note that this power consumption figure is not a direct measurement,

it is calculated from the platform characterization results in Chapter 5 as the addition

of a power monitor to the experimental system would increase the system mass and
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decrease the robot efficiency. The ATR drifts approximately 8 ft over the duration

of the 15 second test with no user lateral input. As shown in Fig. 7.1 the ATR can

also be thrown into the air with an initial condition and achieve stability to hover.

The ATR exhibits a significant amount of drift while hovering, and is likely due to

small controller corrections in attitude to combat aerodynamic forces such as propeller

wash, and air currents in the test bed from sources such as fans, open doors, etc. A

motion capture system or other similar external position sensing and control method

could help reduce these effects.

Figure 7.1: The ATR can be thrown into the air and self-stabilize to hover. The
duration of this test is approximately 14 seconds.
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7.2 Open Loop Aerial Trajectory Tracking

Next, the ATR’s ability to follow a simulation generated trajectory was tested. The

desired trajectory is as follows:

1) Autonomous take-off. Throttle to 93 percent, maintain heading and stabilize.

2) Hover in place for 0.5 seconds.

3) Pitch forward for 0.35 seconds, θdesired = −20◦. Move forward.

4) Pitch backward for 0.35 seconds, θdesired = 20◦. Reduce velocity.

5) Roll right for 0.35 seconds, ϕdesired = 20◦. Move right.

6) Roll left for 0.35 seconds, ϕdesired = −20◦. Reduce velocity.

7) Pitch backward for 0.35 seconds, θdesired = 20◦. Move backward.

8) Pitch forward for 0.35 seconds, θdesired = −20◦. Reduce velocity.

9) Roll left for 0.35 seconds, ϕdesired = −20◦. Move left.

10) Roll right for 0.35 seconds, ϕdesired = 20◦. Reduce velocity.

11) Hover in place

The resulting trajectory is a square pattern of approximately 1.7 m. Fig. 7.2

shows the resulting model and experimental trajectory scaled for the image size. The

ATR is able to track the desired trajectory reasonably well, but without position

sensing, open loop control does not provide good trajectory tracking. Most notably,

the ATR does not traverse to each corner of the desired path. Additionally, the ATR

does not return to the desired position at the end of the test, leaving the square

pattern open. To quantify this error, a measure is developed to estimate the open

loop tracking performance where the error in final position, δf , is compared to the

total path distance, δp and is given by the path error,

er =
δf
δp

(7.1)
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Figure 7.2: Open loop trajectory tracking for a desired square pattern.

.

Since the collected data is in the form of a single aerial video and the pixel to robot

height relationship is unknown, the resulting error calculation is limited. The robot

path is traced in video editing software, and a pixel distance relationship is calculated

from known features in the image. The robot travels a path of approximately 6.45 m

and falls short of the desired path end point by 0.2 m. The resulting path error,

er = .031, indicates that the final position error is small, but Fig. 7.2 indicates that

the path traveled by the ATR is not exactly the desired path. For example, the ATR

misses the corner between steps 4 and 5 by approximately 0.38 m.

Both the formulated model and the experimental system drift when turning, likely
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due to the fact that they both have a component of velocity in the direction previously

traversed. It is estimated that the trajectory tracking would be drastically improved

with a motion capture system or similar sensing method. It is also noted that the

ATR drifts considerably on take-off. This can be due to a number of phenomena not

captured by the model. For example, the model assumes zero initial conditions on

take-off, which may not be true. Also, the formulated model does not capture any

aerodynamic effects that may be present at low altitude or during acceleration of the

platform from the ground to hover.

Figure 7.3: Flying behavior of the ATR into a tube, then rolling through the tube
and out.

An additional experiment was performed to demonstrate potential application of

the ATR. During this test, the ATR was remotely controlled by a joystick and guided

into a 7 in diameter tube,shown in Fig. 7.3. The ATR then rolls through the tube

and exits. This experiment was performed piecewise as the manual operator is not

capable of the advanced control needed for transition between modes and attitude

stabilization.
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7.2.1 Terrestrial Locomotion

The ATR was then tested to explore the robot’s capabilities in tracking terrestrial

trajectories in open loop. First, a trajectory is generated for a roll-to-fly maneuver

where the robot rolls in a straight line, stops, and ideally takes off vertically. The

desired trajectory is as follows:

1) Activate motors to a base throttle and stabilize while on the ground

2) Pitch forward for 0.8 seconds, θdesired = −9◦. Move forward.

3) Pitch backward for 0.3 seconds, θdesired = 30◦. Reduce velocity.

4) Increase motors to full throttle for 0.5 seconds, θdesired = 0◦. Take-off.

5) Decrease motor command to hover in place for 2 seconds.

Figure 7.4: Open loop experimental results for a desired roll, stop, fly trajectory.

The experimental trajectory agrees well with model result and correlates to a

high degree with the desired trajectory as shown in Fig. 7.4. Application of Eq.
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(7.1) indicates an ending position error, δf = 0.28 m, and corresponding path error

er = 0.16. The ending position error is also the maximum path error and is good

representation of the open loop tracking error. The ATR successfully removes much

of its initial ground velocity prior to take off, but an existing velocity and orientation

which are not ideally zero result in a negative êx displacement before the robot can

equilibrate in hover. The model result exhibits the same phenomena, although to

a lesser degree. It is also noticed during the experiment that any deviation from

level ground surface provides a disturbance to the ATR’s attitude that may alter

the desired trajectory. Development of a more robust attitude controller can help

reduce this problem, as well as improved exoskeleton design reducing transmission of

disturbances to the system.

Next, the turning capabilities of the ATR are tested in a single turn maneuver.

Since the designed controller is unable to compensate for large disturbances and the

exoskeleton compliance affects turning dynamics, more advanced trajectories are dif-

ficult to test. The ATR is programmed to activate motors to a low throttle command,

righting the platform, and when stable, the ATR is programmed to a setpoint pitch

angle, θ = 9◦, for terrestrial thrust, and roll angle, ϕ = 8◦, to position the ATR onto

the first set of rings. The desired turning radius is rt = 32.1 cm.

The ATR immediately achieves the set-point roll and pitch angles and begins to

turn in a circular manner, but is soon thrown off course and does not track the tra-

jectory accurately. While the tracking performance is poor, the ATR is still capable

of performing a turn while rolling. the performance is most notably affected by poor

attitude control about the roll and pitch axes when the ball is rolling. Disturbances

in the form of ground imperfections and the fact that the exoskeleton is not perfectly

round while rolling saturate the control effort, and the ATR is unable to maintain

attitude. Additionally, compliance in the exoskeleton is not captured by the for-
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Figure 7.5: Open loop experimental results for a desired roll and turn maneuver

mulated model, which may contribute to non-circular patterns as the rings deform

during rolling. It is also difficult to determine whether the path normal forces that

keep the robot turning in a circular manner are exceeded. If so, the behavior shown

is expected as the robot slips along the surface while rolling.

7.3 Energy Analysis

To experimentally validate the increased efficiency of the ATR, the throttle command

required to roll and fly in a straight line was measured for a set distance and the time

was recorded. From the platform characterization in Section 5, and translational

velocity recorded during experimentation, the time and distance to exhaust a 350 mAh

battery was calculated for each respective mode. In rolling mode, the ATR can travel
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at 2.46 m/s with a current demand of 1.73 A and has a range of 1.79 km for 12.14 min.

Comparatively, in flying mode, the ATR travels at 1.62 m/s with a current demand

of 4.35 A and has a range of 469 m for 4.82 min, showing that the ATR’s rolling

mode is 3.66 times more efficient than flying mode. For the same aerial velocity, an

unmodified quadcopter, weighing 28.2 g, can travel 652 m for 6.71 min, which is 39

percent more efficient than the ATR in flying mode, but the ATR’s rolling mode is

2.63 times more efficient than the unmodified flying-only platform.

7.4 Summary

This chapter presented the results of experiments using the developed ATR and syn-

thesized control techniques. The robot is capable of tracking both aerial and terres-

trial open loop trajectories. Additionally, the robot is able to save considerable energy

in terrestrial locomotion mode, resulting in increased range and operating time.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis presented the design, analysis, control, and implementation of a novel,

ultra-lightweight spherical aerial-terrestrial robot (ATR). The design of the ATR is

comprised of a micro-quadcopter encased in a 6 inch spherical exoskeleton. The ATR

has the ability to fly through the air or roll on the ground, for various applications

such as inspection, surveillance, mapping, and search and rescue. The developed

ATR is currently the smallest quadcopter-based hybrid locomotive robot and is es-

pecially suited for urban applications in tight spaces that require a high degree of

maneuverability.

The dynamic system model is presented for both modes of locomotion, and then

utilized to generate control parameters and inputs to demonstrate hybrid locomotion.

Experimental results show that the synthesized flight controller is capable of stabi-

lizing the attitude of the ATR in both modes of locomotion, and input tracking is

1.47 percent RMS error in aerial mode. The ATR is experimentally tested and proves

capable in autonomous modes such as throw-to-hover, open loop aerial trajectory

tracking, roll-to-fly maneuvers, and demonstrates the capability to perform a turn
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while rolling. The ATR is also tested in a practical environment and is able to fly

into a narrow opening, roll through a tube, and exit to fly out of the tube. Open

loop tracking performance is quantified by the path error and maximum error from

desired path. In aerial mode, the ATR tracks a square trajectory with er = 0.031

over the 6.45 m path and has a maximum error of 0.38 m. In terrestrial mode, the

ATR tracks a rolling-to fly trajectory with er = 0.16 and a maximum error of 0.28 m.

Turning performance is poor and the ATR exhibits severe under-steer when turning,

which could be due to exoskeleton compliance, disturbances in the form of ground

imperfections, or poor attitude control during ground maneuvers.

The general deviation from desired paths in both terrestrial and aerial trajectories

is likely due to effects not captured by the formulated model such as: aerodynamic

effects, motor thrust dynamics and nonlinearities, system compliance, and external

disturbances. Results from open-loop trajectory tracking can be improved with the

addition of an external localization system used for position feedback control. Then,

instead of controlling only the attitude of the ATR, precise position control can be

implemented.

It was estimated that the ATR can roll along the ground for over 12 minutes and

cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a

single 350 mAh battery. Compared to a traditional flying-only robot, the ATR in

rolling mode is 2.63 times more efficient, and in flying mode is only 39 percent less

efficient. The ATR can transition seamlessly between operation modes and is capable

of navigating through constrained spaces.

8.2 Future Work

The ATR is a highly capable aerial-terrestrial robot and future development is en-

couraged by the author. The control of the ATR is both an interesting and complex
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control problem, and further development in this area can enhance the capabilities

of the ATR. Specifically, position control can increase the accuracy of the ATR’s

trajectory tracking.

Improvements in the fabrication of the exoskeleton can enhance the efficiency of

the ATR in aerial mode. For example, a rigid composite exoskeleton could both

lighten the ATR and improve terrestrial performance. Additionally, the quadcopter

platform can be designed as part of the exoskeleton axle, further reducing the system

mass and lowering the quadcopter center of mass that can enhance the system’s

passive stability.
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Appendix B

MATLAB .m Files

B.1 GUI

breaklines

1 func t i on varargout = control GUI ( vararg in )
% CONTROL GUI MATLAB code f o r c on t r o l GUI . f i g

% Begin i n i t i a l i z a t i o n code - DO NOT EDIT
gu i S i n g l e t on = 1 ;
gu i S t a t e = s t r u c t ( ' gui Name ' , mfilename , . . .

' gu i S i n g l e t on ' , gu i S ing l e t on , . . .
' gui OpeningFcn ' , @control GUI OpeningFcn , . . .
' gui OutputFcn ' , @control GUI OutputFcn , . . .
' gui LayoutFcn ' , [ ] , . . .

11 ' gu i Ca l lback ' , [ ] ) ;
i f narg in && i s cha r ( vararg in {1})

gu i S t a t e . g u i Ca l l b a c k = s t r 2 func ( vararg in {1}) ;
end

i f nargout
[ varargout {1 : nargout } ] = gui main fcn ( gu i S ta te , vara rg in { :} ) ;

e l s e
gu i main fcn ( gu i S ta te , vararg in { :} ) ;

end
21

% - - - Executes j u s t be f o r e control GUI i s made v i s i b l e .
f unc t i on control GUI OpeningFcn ( hObject , eventdata , handles , vararg in )
% This func t i on has no output args , s e e OutputFcn.
% hObject handle to f i g u r e
% eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles s t r u c tu r e with handles and user data ( see GUIDATA)
% vararg in command l i n e arguments to control GUI ( see VARARGIN)

% Choose d e f au l t command l i n e output f o r control GUI
31 g l oba l joy rtr im ptrim bl2 br2% e s t a b l i s h g l oba l va r i ab l e s
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- - - - - - - - - - - - - - - - - - - - - -
hand le s . output = hObject ;
%c r ea t e j o y s t i c k ob j e c t and a s s i gn axes

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
bl2=0;
br2=0;
joy=v r j o y s t i c k (1 ) ;
t h r o t t l e =- ax i s ( joy , 2 ) ;
yaw=- ax i s ( joy , 3 ) ;
r o l l=ax i s ( joy , 4 ) ;
p i t ch=ax i s ( joy , 5 ) ;

41 %se t a l l t r ims = 0
rtr im=0;
ptrim=0;
%c r ea t e t imer f o r sending and r e c e i v i n g data

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
hand l e s . t ime r = timer ( . . .

'ExecutionMode ' , ' f ixedRate ' , . . . % Run timer r epea t ed ly
' Period ' , .02 , . . . % I n i t i a l per iod i s 0 . 02

s e c .
'TimerFcn ' , {@update data , hObject }) ; % Spec i f y c a l l ba ck func t i on

%cr ea t e t imer f o r updating p l o t data o f the LIDAR
- - - - - - - - - - - - - - - - - - - - - - - - -%

hand l e s . t imer2 = timer ( . . .
51 'ExecutionMode ' , ' f ixedRate ' , . . . % Run timer r epea t ed ly

' Period ' , .02 , . . . % I n i t i a l per iod i s 0 . 02
s e c .

'TimerFcn ' , {@update outputs , hObject }) ; % Spec i f y c a l l ba ck func t i on
%p lo t i n i t i a l input values

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
hand l e s . b a r t h r o t t l e = bar ( h and l e s . a x th r o t t l e , t h r o t t l e , ' g ' , 'BarWidth '

, 1 ) ;
h a n d l e s . b a r r o l l = barh ( h and l e s . a x r o l l , r o l l , ' g ' , 'BarWidth ' , 1 ) ;
h and l e s . b a r p i t ch = bar ( hand l e s . ax p i t ch , pitch , ' g ' , 'BarWidth ' , 1 ) ;
handles .bar yaw = barh ( handles .ax yaw , yaw , ' g ' , 'BarWidth ' , 1 ) ;
% Set Axes l im i t s and co l o r s

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
s e t ( h and l e s . a x th r o t t l e , 'YLim ' , [ 0 100 ] ) ;

61 s e t ( h and l e s . a x th r o t t l e , 'XColor ' , [ 0 . 8 0 . 8 0 . 8 ] ) ;
s e t ( h and l e s . a x th r o t t l e , 'YColor ' , [ 0 . 8 0 . 8 0 . 8 ] ) ;
s e t ( h and l e s . a x r o l l , 'XLim ' , [ 0 0 100 ] ) ;
s e t ( h and l e s . a x r o l l , 'XColor ' , [ 0 . 8 0 . 8 0 . 8 ] ) ;
s e t ( h and l e s . a x r o l l , 'YColor ' , [ 0 . 8 0 . 8 0 . 8 ] ) ;
s e t ( hand l e s . ax p i t ch , 'YLim ' , [ 0 0 100 ] ) ;
s e t ( hand l e s . ax p i t ch , 'XColor ' , [ 0 . 8 0 . 8 0 . 8 ] ) ;
s e t ( hand l e s . ax p i t ch , 'YColor ' , [ 0 . 8 0 . 8 0 . 8 ] ) ;
s e t ( handles .ax yaw , 'XLim ' , [ 0 0 100 ] ) ;
s e t ( handles .ax yaw , 'XColor ' , [ 0 . 8 0 . 8 0 . 8 ] ) ;

71 s e t ( handles .ax yaw , 'YColor ' , [ 0 . 8 0 . 8 0 . 8 ] ) ;
s e t ( handles .comport , 'Value ' , 1 ) ;
%I n i t i a l i z e Buttons to not depressed

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
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s e t ( handles.XBut1 A , 'Value ' , 0 ) ;
s e t ( handles.XBut2 B , 'Value ' , 0 ) ;
s e t ( handles.XBut3 X , 'Value ' , 0 ) ;
s e t ( handles.XBut4 Y , 'Value ' , 0 ) ;
s e t ( hand le s . connect , 'Enable ' , ' o f f ' )
s e t ( hand l e s . s top , 'Enable ' , ' on ' )
%i n i t i a l i z e Trim

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
81 s e t ( hand le s .pt r imt , ' St r ing ' , ' Pitch Trim :0 ' ) ;

s e t ( hand l e s . r t r imt , ' St r ing ' , ' Rol l Trim :0 ' ) ;
s e t ( hand le s .y t r imt , ' St r ing ' , 'Yaw Trim :0 ' ) ;
% - - - - - - - - - - - - - - - - - - - - - - - - -END CJ INIT CODE

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
% Update handles s t r u c tu r e
guidata ( hObject , handles ) ;%ptc loud
% - - - Outputs from th i s func t i on are returned to the command l i n e .
f unc t i on varargout = control GUI OutputFcn ( hObject , eventdata , handles )
% varargout c e l l array f o r r e tu rn ing output args ( s ee VARARGOUT) ;
% hObject handle to f i g u r e

91 % eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles s t r u c tu r e with handles and user data ( see GUIDATA)

% Get d e f au l t command l i n e output from handles s t r u c tu r e
varargout {1} = hand le s . output ;

% - - - Executes on button pr e s s in connec t .
f unc t i on connect Ca l lback ( hObject , eventdata , handles )
% hObject handle to connect ( s ee GCBO)

101 % eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles s t r u c tu r e with handles and user data ( see GUIDATA)
% Only s t a r t t imer i f i t i s not running
g l oba l c t r c t r 1
%Star t The Data Send/Receive Timer at 50Hz
i f strcmp ( get ( hand le s . t imer , 'Running ' ) , ' o f f ' )

s t a r t ( hand l e s . t ime r ) ;
end
%Star t The Plot Lidar Timer at 4Hz or whatever i s de f ined in s ta r tup

s c r i p t
i f strcmp ( get ( hand le s . t imer2 , 'Running ' ) , ' o f f ' )

111 s t a r t ( hand l e s . t imer2 ) ;
end
c t r =0;
c t r1 =0;

% - - - Executes on button pr e s s in s t op .
func t i on s top Ca l lback ( hObject , eventdata , handles )
% hObject handle to stop ( see GCBO)
% eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles s t r u c tu r e with handles and user data ( see GUIDATA)

121 g l oba l obj1
i f strcmp ( get ( hand le s . t imer , 'Running ' ) , ' on ' )
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stop ( hand l e s . t ime r ) ;
end
i f strcmp ( get ( hand le s . t imer2 , 'Running ' ) , ' on ' )

stop ( hand l e s . t ime r ) ;
end
s e t ( hand l e s . s top , 'Enable ' , ' o f f ' )
%- - - - - - - - - -
%Close COM Port

131 % Disconnect from instrument object , ob j 1 .
f c l o s e ( obj1 ) ;
d e l e t e ( obj1 ) ;
d e l e t e ( i n s t r f i n d a l l )

f unc t i on update outputs ( hObject , eventdata , h f i g u r e )
handles = guidata ( h f i gu r e ) ;

f unc t i on update data ( hObject , eventdata , h f i g u r e )
141 g l oba l joy obj1 c t r c t r 1 rtr im ptrim tunegain bl2 br2 kprp s k i r p s

kdrp s kpy s k i y s kdy s%r e c a l l updatates from g l oba l vars
handles = guidata ( h f i gu r e ) ;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%Get cur rent va lue o f input p l o t s
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
t h r o t t l e = get ( h and l e s . b a r t h r o t t l e , 'YData ' ) ;
r o l l=get ( h and l e s . b a r r o l l , 'YData ' ) ;
p i t ch=-1∗ get ( hand l e s . ba r p i t ch , 'YData ' ) ;
yaw = get ( handles .bar yaw , 'YData ' ) ;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

151 %Get cur rent va lue o f buttons
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
BA=button ( joy , 1 ) ;
BB=button ( joy , 2 ) ;
BX=button ( joy , 3 ) ;
BY=button ( joy , 4 ) ;
BL=button ( joy , 5 ) ;
BR=button ( joy , 6 ) ;
BK=button ( joy , 7 ) ;
BS=button ( joy , 8 ) ;

161 BLS=button ( joy , 9 ) ;
BRS=button ( joy , 1 0 ) ;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%Trigger button c a l l b a ck s i f buttons are depressed
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
ct r1=ct r1 +1;
i f c t r 1==15

c t r1 =0;
ba=BA;
bb=BB;

171 bx=BX;
by=BY;
b l=BL;
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br=BR;
bs=BS ;
bk=BK;
i f ba==1

ptrim=ptrim - 1 ;
p s t r i ng=s t r c a t ( ' Pitch Trim : ' , num2str ( ptrim ) ) ;
s e t ( hand le s .pt r imt , ' St r ing ' , p s t r i n g ) ;

181 e l s e
ptrim ;

end
i f bb==1

rtr im=rtr im+1;
r s t r i n g=s t r c a t ( ' Rol l Trim : ' , ' ' , num2str ( r t r im ) ) ;
s e t ( hand l e s . r t r imt , ' St r ing ' , r s t r i n g ) ;

e l s e
r t r im ;

end
191 i f bx==1

rtr im=rtrim - 1 ;
r s t r i n g=s t r c a t ( ' Rol l Trim : ' , num2str ( r t r im ) ) ;

s e t ( hand l e s . r t r imt , ' St r ing ' , r s t r i n g ) ;
e l s e

r t r im ;
end
i f by==1

ptrim=ptrim+1;
p s t r i ng=s t r c a t ( ' Pitch Trim : ' , num2str ( ptrim ) ) ;

201 s e t ( hand le s .pt r imt , ' St r ing ' , p s t r i n g ) ;
e l s e

ptrim ;
end
i f b l==1

bl2= 'D ' ;
f p r i n t f ( obj1 , 'T50R50P75Y50 ' )

e l s e
b l ;

end
211 i f bs==1

f p r i n t f ( obj1 , 'T00R50P50Y99 ' )
f p r i n t f ( obj1 , 'T00R50P50Y50 ' )

e l s e
bs ;

end
i f bk==1
f p r i n t f ( obj1 , 'T00R50P50Y00 ' )

e l s e
bk ;

221 end

i f br==1
br2= 'E ' ;
f p r i n t f ( obj1 , 'T00R50P50Y50 ' )
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e l s e
br ;

end

e l s e
231 end

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%%se t new value o f c on t r o l input f o r sending to plat form%%
%%% NEW Expo Setup f o r axes
expo=2; %exponent i a l v a r i ab l e f o r ax i s i npu t . 2 i s good
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%th r o t t l e ax i s - apply expo , s ca l e , l im i t to 50< t h r o t t l e <99 neut ra l=50
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
th r o t t l e r aw =(- ax i s ( joy , 2 ) ) ;
t h r o t t l e i n t =(( th r o t t l e r aw ˆ3) ˆ( expo - 1 )+th r o t t l e r aw ) /expo ;

241 t h r o t t l e s =100∗( t h r o t t l e r aw ) ;
i f t h r o t t l e s >99

t h r o t t l e s =99;
e l s e

t h r o t t l e s=t h r o t t l e s ;
end
i f t h r o t t l e s <0

t h r o t t l e s =0;
e l s e

t h r o t t l e s=t h r o t t l e s ;
251 end

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%yaw ax i s - apply expo , s ca l e , l im i t to 50<yaw<99, neu t ra l=75
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
yaw raw=- ax i s ( joy , 3 ) ;
yaw int=((yaw rawˆ3) ˆ( expo - 1 )+yaw raw ) /expo ;
yaw s=50∗yaw int+50;
%yaw s=yaw int ;
i f yaw s >99

yaw s=99;
261 e l s e

yaw s=yaw s ;
end
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%r o l l ax i s - apply expo , s ca l e , l im i t to 50< r o l l <99, neu t ra l=75
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
r o l l r aw=ax i s ( joy , 4 ) ;
r o l l i n t =(( r o l l r aw ˆ3) ˆ( expo - 1 )+r o l l r aw ) /expo ;
r o l l s =50∗( r o l l i n t )+50+rtr im ;
%r o l l s=r o l l i n t ;

271 i f r o l l s >99
r o l l s =99;

e l s e
r o l l s=r o l l s ;

end
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%pi tch ax i s - apply expo , s ca l e , l im i t to 50<pitch <99, neu t ra l=75
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%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
pitch raw=ax i s ( joy , 5 ) ;
p i t c h i n t =(( p i tch raw ˆ3) ˆ( expo - 1 )+pitch raw ) /expo ;

281 p i t c h s =50∗( p i t c h i n t )+50+ptrim ;
%p i t c h s=p i t c h i n t ;
i f p i t c h s >99

p i t c h s =99;
e l s e

p i t c h s=p i t c h s ;
end
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%plo t new value o f input
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

291 s e t ( h and l e s . b a r t h r o t t l e , 'YData ' , t h r o t t l e s ) ;
s e t ( h and l e s . b a r r o l l , 'YData ' , r o l l s ) ;
s e t ( hand l e s . ba r p i t ch , 'YData ' , p i t c h s ) ;
s e t ( handles .bar yaw , 'YData ' , yaw s ) ;
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%Format j o y s t i c k commands f o r s e r i a l send
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%t s=num2str ( round ( t h r o t t l e s ) ) ;

t s=s p r i n t f ( '%02d ' , round ( t h r o t t l e s ) ) ;
301 s e t ( h and l e s . t h r o t t l e s t a t , ' St r ing ' , t s )

r s=s p r i n t f ( '%02 . 0 f ' , r o l l s ) ;
s e t ( h a n d l e s . r o l l s t a t , ' St r ing ' , r s )
p s=s p r i n t f ( '%02 . 0 f ' , p i t c h s ) ;
s e t ( hand l e s . p i t ch s t a t , ' St r ing ' , p s )
y s=s p r i n t f ( '%02 . 0 f ' , yaw s ) ;
s e t ( handles .yawstat , ' St r ing ' , y s )
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%Tune gains , yo
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%

311 prp=get ( handles .kprp , ' St r ing ' ) ;
prp=str2num ( prp ) ∗1000 ;
i r p=get ( hand l e s . k i rp , ' St r ing ' ) ;
i r p=str2num ( i r p ) ∗100000;
drp=get ( handles .kdrp , ' St r ing ' ) ;
drp=str2num ( drp ) ∗1000 ;
py=get ( handles .kpy , ' St r ing ' ) ;
py=str2num (py ) ∗1000 ;
i y=get ( hand l e s . k iy , ' St r ing ' ) ;
i y=str2num ( iy ) ∗1000 ;

321 dy=get ( handles .kdy , ' St r ing ' ) ;
dy=str2num (dy ) ∗1000 ;
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
%Str ing and format gains , yo
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
kprp s=s p r i n t f ( '%05d ' , prp ) ;
kprp s=s t r c a t ( 'A ' , kprp s ) ;
k i r p s=s p r i n t f ( '%05d ' , i r p ) ;
k i r p s=s t r c a t ( 'B ' , k i r p s ) ;
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kdrp s=s p r i n t f ( '%05d ' , drp ) ;
331 kdrp s=s t r c a t ( 'C ' , kdrp s ) ;

kpy s=s p r i n t f ( '%05d ' , py ) ;
kpy s=s t r c a t ( 'D ' , kpy s ) ;
k i y s=s p r i n t f ( '%05d ' , i y ) ;
k i y s=s t r c a t ( 'E ' , k i y s ) ;
kdy s=s p r i n t f ( '%05d ' , dy ) ;
kdy s=s t r c a t ( 'F ' , kdy s ) ;
%ga ins=s t r c a t ( 'A' , kprp s , 'B ' , k i rp s , 'C' , kdrp s , 'D' , kpy s , 'E ' , k i y s , 'F ' ,

kdy s ) ;

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%
341 %Send S e r i a l command at 50Hz and append with ”L” and packet i nd i c a t o r

% % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%;
transmit=get ( hand le s . t ransmitdata , 'Value ' ) ;
i f t ransmit ==1

%i f not tuning j u s t send T,R,P,Y
commout=s t r c a t ( 'T ' , t s , 'R ' , r s , 'P ' , p s , 'Y ' , y s )
f p r i n t f ( obj1 , commout)

e l s e
t ransmit=transmit ;

351 end

% - - - Executes when user attempts to c l o s e f i g u r e 1 .
func t i on f igure1 CloseReques tFcn ( hObject , eventdata , handles )
% Before ex i t i ng , i f the t imer i s running , stop i t .
i f strcmp ( get ( hand le s . t imer , 'Running ' ) , ' on ' )

stop ( hand l e s . t ime r ) ;
end
% Destroy t imer
d e l e t e ( hand l e s . t imer )

361 % END USER CODE

% Hint : d e l e t e ( hObject ) c l o s e s the f i g u r e
d e l e t e ( hObject ) ;
% - - - Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r o p e r t i e s .
f unc t i on ax th ro t t l e Crea t eFcn ( hObject , eventdata , handles )
% hObject handle to a x t h r o t t l e ( s ee GCBO)
% eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles empty - handles not c reated un t i l a f t e r a l l CreateFcns

c a l l e d

371 % Hint : p lace code in OpeningFcn to populate a x t h r o t t l e
% - - - Executes on s e l e c t i o n change in comport.
f unc t i on comport Cal lback ( hObject , eventdata , handles )
% hObject handle to comport ( s ee GCBO)
% eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles s t r u c tu r e with handles and user data ( see GUIDATA)
g l oba l obj1
id=get ( handles .comport , ' value ' ) ;
switch id
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case 1
381 f c l o s e ( obj1 ) ;

case 2
obj1 = i n s t r f i n d ( 'Type ' , ' s e r i a l ' , 'Port ' , 'COM1 ' , 'Tag ' , ' ' ) ;
P= 'COM1 '

case 3
obj1 = i n s t r f i n d ( 'Type ' , ' s e r i a l ' , 'Port ' , 'COM2 ' , 'Tag ' , ' ' ) ;
P= 'COM2 '

case 4
obj1 = i n s t r f i n d ( 'Type ' , ' s e r i a l ' , 'Port ' , 'COM3 ' , 'Tag ' , ' ' ) ;
P= 'COM3 '

391 case 5
obj1 = i n s t r f i n d ( 'Type ' , ' s e r i a l ' , 'Port ' , 'COM4 ' , 'Tag ' , ' ' ) ;
P= 'COM4 '

case 6
obj1 = i n s t r f i n d ( 'Type ' , ' s e r i a l ' , 'Port ' , 'COM5 ' , 'Tag ' , ' ' ) ;
P= 'COM5 '

end
i f isempty ( obj1 )

obj1 = s e r i a l (P) ;
e l s e

401 f c l o s e ( obj1 ) ;
obj1 = obj1 (1 )

end
s e t ( obj1 , 'Terminator ' , 'LF ' ) ;
s e t ( obj1 , 'BaudRate ' , 115200) ;
s e t ( obj1 , ' InputBu f f e rS i z e ' ,400000) ;
s e t ( obj1 , 'Timeout ' , 3 ) ;
fopen ( obj1 ) ;
s e t ( hand le s . connect , 'Enable ' , ' on ' )

411 % - - - Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l p r o p e r t i e s .
f unc t i on comport CreateFcn ( hObject , eventdata , handles )
% hObject handle to comport ( s ee GCBO)
% eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles empty - handles not c reated un t i l a f t e r a l l CreateFcns

c a l l e d

% Hint : popupmenu con t r o l s u sua l l y have a white background on Windows.
% See ISPC and COMPUTER.
i f i s p c && i s e qua l ( get ( hObject , 'BackgroundColor ' ) , get (0 , '

defau l tUicontro lBackgroundColor ' ) )
s e t ( hObject , 'BackgroundColor ' , ' white ' ) ;

421 end

% - - - Executes on button pr e s s in s endk i .
f unc t i on sendk i Ca l lback ( hObject , eventdata , handles )
g l oba l obj1 k i r p s

f p r i n t f ( obj1 , k i r p s )
% hObject handle to sendki ( s ee GCBO)
% eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles s t r u c tu r e with handles and user data ( see GUIDATA)
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431
% - - - Executes on button pr e s s in sendkd.
func t i on sendkd Cal lback ( hObject , eventdata , handles )
% hObject handle to sendkd ( see GCBO)
% eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles s t r u c tu r e with handles and user data ( see GUIDATA)
g l oba l obj1 kdrp s

f p r i n t f ( obj1 , kdrp s )

441 % - - - Executes on button pr e s s in sendkpy.
func t i on sendkpy Cal lback ( hObject , eventdata , handles )
% hObject handle to sendkpy ( see GCBO)
% eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles s t r u c tu r e with handles and user data ( see GUIDATA)
g l oba l obj1 kpy s

f p r i n t f ( obj1 , kpy s )

% - - - Executes on button pr e s s in s endk iy .
451 func t i on sendk iy Ca l lback ( hObject , eventdata , handles )

% hObject handle to sendkiy ( s ee GCBO)
% eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles s t r u c tu r e with handles and user data ( see GUIDATA)
g l oba l obj1 k i y s

f p r i n t f ( obj1 , k i y s )

% - - - Executes on button pr e s s in sendkdy.
func t i on sendkdy Cal lback ( hObject , eventdata , handles )

461 % hObject handle to sendkdy ( see GCBO)
% eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles s t r u c tu r e with handles and user data ( see GUIDATA)
g l oba l obj1 kdy s

f p r i n t f ( obj1 , kdy s )

% - - - Executes on button pr e s s in c l e a r e r r o r .
f unc t i on c l e a r e r r o r Ca l l b a c k ( hObject , eventdata , handles )
% hObject handle to c l e a r e r r o r ( s ee GCBO)

471 % eventdata r e s e rved - to be de f ined in a fu tu r e ve r s i on o f MATLAB
% handles s t r u c tu r e with handles and user data ( see GUIDATA)
g l oba l obj1

f p r i n t f ( obj1 , 'R ' )

B.2 Simulation Videos

B.2.1 Create Patches
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% make the i n i t i a l patches - v e r t i c e s and faces .m
%quad
[ f ace s , v e r t i c e s ]=makequad ( ' s imp l e s im3 . s t l ' ) ;
%r ing

5 [ f a c e s r , v e r t i c e s r ]=makequad ( ' r i n g . s t l ' ) ;
%Bal l - make su r f a c e f i r s t , r e s i z e and convert to patches
[ sphx , sphy , sphz ]= sphere ( ) ;
[ f a c e s b , v e r t i c e s b , c ]= sur f2patch ( . 0 7 6 . ∗sphx , . 0 7 6 . ∗sphy , . 0 7 6 . ∗ sphz ) ;
X ground=[ - .1 , - .1 , 8 , 8 ] ;
Y ground = [3 , - 3 , - 3 , 3 ] ;
Z ground=- . 0 7 6 . ∗ [ 1 , 1 , 1 , 1 ] ;
% % Quad IC s p e c i f i c a t i o n
r = [ - 0 , - 0 , 0 ] ; % Reference po s i t i o n
A = [0 , 0 , p i / 2 ] ; % Reference o r i e n t a t i o n (x - y - z Euler ang le )

15 % % Euler ang le -> Orientat ion matrix
R = Euler2R (A) ;
% % Ver t i c e s - Apply r o t a t i on and po s i t i o n f o r each
%- - - - - - - - - -Quad - - - - - - - - - - - - - -
v e r t i c e s =[ v e r t i c e s ( : , 1 ) - .046 , v e r t i c e s ( : , 2 ) - .076 , v e r t i c e s ( : , 3 ) - . 001 ] ;
VertexData = GeoVerMakeObj ( r ,R, v e r t i c e s ) ;
%- - - - - - - - - - Ring - - - - - - - - - - - - - -
v e r t i c e s r =[ v e r t i c e s r ( : , 1 ) - .076 , v e r t i c e s r ( : , 2 ) - .076 , v e r t i c e s r ( : , 3 ) -0

.001 ] ;
VertexData r = GeoVerMakeObj ( r ,R, v e r t i c e s r ) ;
%- - - - - - - - - - Bal l - - - - - - - - - - - - - -

25 v e r t i c e s b =[ v e r t i c e s b ( : , 1 ) , v e r t i c e s b ( : , 2 ) , v e r t i c e s b ( : , 3 ) ] ;
VertexData b = GeoVerMakeObj ( r ,R, v e r t i c e s b ) ;
% - - - - - - - - - - - - - - - - - - - - - - - -
% Make new patches
[ PatchData X , PatchData Y , PatchData Z ] = GeoPatMake ( VertexData , f a c e s ) ;
[ PatchData X r , PatchData Y r , PatchData Z r ] = GeoPatMake ( VertexData r ,

f a c e s r ) ;
[ PatchData X b , PatchData Y b , PatchData Z b ] = GeoPatMake ( VertexData b ,

f a c e s b ) ;
% Draw patches
f i g u r e
hold on

35 %- - - - - - - - - - Bal l - - - - - - - - - - - - - -
b a l l=patch ( PatchData X b , PatchData Y b , PatchData Z b , 'b ' ) ;
s e t ( ba l l , ' FaceLight ing ' , 'phong ' , ' EdgeLighting ' , 'phong ' , 'EdgeColor ' , ' none

' ) ;
s e t ( ba l l , 'EraseMode ' , ' normal ' ) ;
alpha (0 . 1 )
%- - - - - - - - - -Quad - - - - - - - - - - - - - -
quad = patch (PatchData X , PatchData Y , PatchData Z , ' r ' ) ;
s e t ( quad , ' FaceLight ing ' , 'phong ' , ' EdgeLighting ' , 'phong ' , 'EdgeColor ' , ' none

' ) ;
s e t ( quad , 'EraseMode ' , ' normal ' ) ;
%- - - - - - - - - - Ring - - - - - - - - - - - - - -

45 r ing = patch ( PatchData X r , PatchData Y r , PatchData Z r , 'k ' ) ;
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s e t ( r ing , ' FaceLight ing ' , 'phong ' , ' EdgeLighting ' , 'phong ' , 'EdgeColor ' , ' none
' ) ;

s e t ( r ing , 'EraseMode ' , ' normal ' ) ;
%- - - - - - - - - -Ground - - - - - - - - - - - - - -
ground=patch (X ground , Y ground , Z ground , ' g ' ) ;
s e t ( ground , ' FaceLight ing ' , 'phong ' , ' EdgeLighting ' , 'phong ' , 'EdgeColor ' , '

none ' , ' FaceColor ' , [ 0 . 7 0 . 7 0 . 7 ] ) ;
s e t ( ground , 'EraseMode ' , ' normal ' ) ;

% Axes s e t t i n g s
x l ab e l ( 'x ' , ' FontSize ' , 14) ;

55 y l ab e l ( 'y ' , ' FontSize ' , 14) ;
z l a b e l ( ' z ' , ' FontSize ' , 14) ;
s e t ( gca , ' FontSize ' , 14) ;
ax i s v i s3d equal ;
view ( [ - 3 7 .5 , 3 0 ] ) ;
caml ight ;
g r i d on ;
xlim ( [ - 1 0 , 1 0 ] ) ;
yl im ( [ - 1 0 , 1 0 ] ) ;
z l im ( [ - 1 , 1 ] ) ;

B.2.2 Animation

c l e a r M
% Motion data
minx=- . 1 ;
maxx=8;
miny= -3;

6 maxy=3;
minz=- .076 ;
maxz=4;
t = tsim ' ; % Time data
r = [ xsim , ysim , zsim ] ; % Pos i t i on data
Q A = [ - phisim , - thetasim , ps i s im ] ;% Quad o r i e n t a t i o n Data
B A = [ - phisim , alphasim , ps i s im ] %ba l l / r i ng o r i e n t a t i o n Data
n time = length ( tsim ) ; % length o f v ideo
% Compute propagat ion o f v e r t i c e s and patches
f o r i t ime =1: n time

16 R Q = Euler2R (Q A( i t ime , : ) ) ;
R B=Euler2R (B A( i t ime , : ) ) ;
%- - - - - - -Quad - - - - - - -
VertexData ( : , : , i t ime ) = GeoVerMakeObj ( r ( i t ime , : ) ,R Q, v e r t i c e s ) ;
[X,Y,Z ] = GeoPatMake ( VertexData ( : , : , i t ime ) , f a c e s ) ;
PatchData X ( : , : , i t ime ) = X;
PatchData Y ( : , : , i t ime ) = Y;
PatchData Z ( : , : , i t ime ) = Z ;
%- - - - - - - Bal l - - - - - - -
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VertexData b ( : , : , i t ime ) = GeoVerMakeObj ( r ( i t ime , : ) ,R B , v e r t i c e s b )
;

26 [ X b , Y b , Z b ] = GeoPatMake ( VertexData b ( : , : , i t ime ) , f a c e s b ) ;
PatchData X b ( : , : , i t ime ) = X b ;
PatchData Y b ( : , : , i t ime ) = Y b ;
PatchData Z b ( : , : , i t ime ) = Z b ;
%- - - - - - - Ring - - - - - - -
VertexData r ( : , : , i t ime ) = GeoVerMakeObj ( r ( i t ime , : ) ,R B , v e r t i c e s r )

;
[ X r , Y r , Z r ] = GeoPatMake ( VertexData r ( : , : , i t ime ) , f a c e s r ) ;
PatchData X r ( : , : , i t ime ) = X r ;
PatchData Y r ( : , : , i t ime ) = Y r ;
PatchData Z r ( : , : , i t ime ) = Z r ;

36 end
% Draw i n i t i a l f i g u r e 4 t o t a l axes
%- - - - - - - - - - - - - - - -
Scene=f i g u r e ( ' un i t s ' , ' normal ized ' , ' ou t e r po s i t i o n ' , [ 0 . 0 0 . 05 1 .95 ] )
% subplot ( ' Pos i t ion ' , [ . 05 . 1 . 6 . 85 ] ) ;
x l ab e l ( 'x [m] ' , ' FontSize ' , 22 , 'FontName ' , 'Times New Roman ' ) ;
y l ab e l ( 'y [m] ' , ' FontSize ' , 22 , 'FontName ' , 'Times New Roman ' ) ;
z l a b e l ( ' z [m] ' , ' FontSize ' , 22 , 'FontName ' , 'Times New Roman ' ) ;
s e t ( gca , ' FontSize ' , 22 , 'FontName ' , 'Times New Roman ' ) ;
%ax i s v i s3d equal ;

46 view ( [ 4 0 , 3 0 ] ) ;
caml ight ;
g r i d on ;
xlim ( [ minx ,maxx ] ) ;
yl im ( [ miny ,maxy ] ) ;
z l im ( [ minz ,maxz ] ) ;
%patches f o r each s o l i d%
p1 = patch ( PatchData X ( : , : , 1 ) , PatchData Y ( : , : , 1 ) , PatchData Z ( : , : , 1 ) , ' r ' )

;
p1 b = patch ( PatchData X b ( : , : , 1 ) , PatchData Y b ( : , : , 1 ) , PatchData Z b

( : , : , 1 ) , 'b ' ) ;
p1 r = patch ( PatchData X r ( : , : , 1 ) , PatchData Y r ( : , : , 1 ) , PatchData Z r

( : , : , 1 ) , 'k ' ) ;
56 alpha ( p1 b , 0 . 25 ) ;

%- - - - - - - - - -APPEARANCE- - - - - -
s e t ( p1 b , ' FaceLight ing ' , 'phong ' , ' EdgeLighting ' , 'phong ' , 'EdgeColor ' , ' none

' ) ;
s e t ( p1 b , 'EraseMode ' , ' normal ' ) ;
s e t (p1 , ' FaceLight ing ' , 'phong ' , ' EdgeLighting ' , 'phong ' , 'EdgeColor ' , 'Red ' )
s e t ( p1 r , ' FaceLight ing ' , 'phong ' , ' EdgeLighting ' , 'phong ' , 'EdgeColor ' , '

Black ' )
ground=patch (X ground , Y ground , Z ground , ' g ' ) ;
s e t ( ground , ' FaceLight ing ' , 'phong ' , ' EdgeLighting ' , 'phong ' , 'EdgeColor ' , '

none ' , ' FaceColor ' , [ 0 . 7 0 . 7 0 . 7 ] ) ;
s e t ( ground , 'EraseMode ' , ' normal ' ) ;

66 % % - - - - - - - - - - - - - - - -
% subplot ( ' Pos i t ion ' , [ . 76 .718 . 2 .245 ] ) ;
% t i t l e ( 'Top View ' , ' FontSize ' , 12)
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% x lab e l ( ' x [m] ' , ' FontSize ' , 1 2 ) ;
% y l ab e l ( ' y [m] ' , ' FontSize ' , 1 2 ) ;
% z l a b e l ( ' z [m] ' , ' FontSize ' , 1 2 ) ;
% s e t ( gca , ' FontSize ' , 1 0 ) ;
% %ax i s v i s3d equal ;
% view ( [ 0 , 9 0 ] ) ;
% caml ight ;

76 % gr id on ;
% xlim ( [ minx ,maxx ] ) ;
% ylim ( [ miny ,maxy ] ) ;
% zl im ( [ minz ,maxz ] ) ;
% %patches f o r each s o l i d%
% p2 = patch ( PatchData X ( : , : , 1 ) , PatchData Y ( : , : , 1 ) , PatchData Z ( : , : , 1 ) , ' r

' ) ;
% p2 b = patch ( PatchData X b ( : , : , 1 ) , PatchData Y b ( : , : , 1 ) , PatchData Z b

( : , : , 1 ) , 'b ' ) ;
% p2 r = patch ( PatchData X r ( : , : , 1 ) , PatchData Y r ( : , : , 1 ) , PatchData Z r

( : , : , 1 ) , 'k ' ) ;
% alpha ( p2 b , 0 . 25 ) ;
% % - - - - - - - - - -APPEARANCE- - - - - -

86 % se t ( p2 b , ' FaceLighting ' , ' phong ' , ' EdgeLighting ' , ' phong ' , ' EdgeColor ' , '
none ' ) ;

% s e t ( p2 b , ' EraseMode ' , ' normal ' ) ;
% s e t (p2 , ' FaceLighting ' , ' phong ' , ' EdgeLighting ' , ' phong ' , ' EdgeColor ' , 'Red

' )
% s e t ( p2 r , ' FaceLighting ' , ' phong ' , ' EdgeLighting ' , ' phong ' , ' EdgeColor ' , '

Black ' )
% % - - - - - - - - - - - - - - - -
% subplot ( ' Pos i t ion ' , [ . 76 .384 . 2 .245 ] ) ;
% t i t l e ( ' Front View ' , ' FontSize ' , 12)
% x l ab e l ( ' x [m] ' , ' FontSize ' , 1 2 ) ;
% y l ab e l ( ' y [m] ' , ' FontSize ' , 1 2 ) ;
% z l a b e l ( ' z [m] ' , ' FontSize ' , 1 2 ) ;

96 % se t ( gca , ' FontSize ' , 1 0 ) ;
% %ax i s v i s3d equal ;
% view ( [ 9 0 , 0 ] ) ;
% caml ight ;
% gr id on ;
% xlim ( [ minx ,maxx ] ) ;
% ylim ( [ miny ,maxy ] ) ;
% zl im ( [ minz ,maxz ] ) ;
% % - - - - - - -
% p3 = patch ( PatchData X ( : , : , 1 ) , PatchData Y ( : , : , 1 ) , PatchData Z ( : , : , 1 ) , ' r

' ) ;
106 % p3 b = patch ( PatchData X b ( : , : , 1 ) , PatchData Y b ( : , : , 1 ) , PatchData Z b

( : , : , 1 ) , 'b ' ) ;
% p3 r = patch ( PatchData X r ( : , : , 1 ) , PatchData Y r ( : , : , 1 ) , PatchData Z r

( : , : , 1 ) , 'k ' ) ;
% alpha ( p3 b , 0 . 25 ) ;
% % - - - - - - - - - -APPEARANCE- - - - - -
% s e t ( p3 b , ' FaceLighting ' , ' phong ' , ' EdgeLighting ' , ' phong ' , ' EdgeColor ' , '

none ' ) ;
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% se t ( p3 b , ' EraseMode ' , ' normal ' ) ;
% s e t (p3 , ' FaceLighting ' , ' phong ' , ' EdgeLighting ' , ' phong ' , ' EdgeColor ' , 'Red

' )
% s e t ( p3 r , ' FaceLighting ' , ' phong ' , ' EdgeLighting ' , ' phong ' , ' EdgeColor ' , '

Black ' )
% % - - - - - - - - - - - - - - - -
% subplot ( ' Pos i t ion ' , [ . 76 .053 . 2 .245 ] ) ;

116 % t i t l e ( ' Side View ' , ' FontSize ' , 12)
% x l ab e l ( ' x [m] ' , ' FontSize ' , 1 2 ) ;
% y l ab e l ( ' y [m] ' , ' FontSize ' , 1 2 ) ;
% z l a b e l ( ' z [m] ' , ' FontSize ' , 1 2 ) ;
% s e t ( gca , ' FontSize ' , 1 0 ) ;
% %ax i s v i s3d equal ;
% view ( [ 0 , 0 ] ) ;
% caml ight ;
% gr id on ;
% xlim ( [ minx ,maxx ] ) ;

126 % ylim ( [ miny ,maxy ] ) ;
% zl im ( [ minz ,maxz ] ) ;
% p4 = patch ( PatchData X ( : , : , 1 ) , PatchData Y ( : , : , 1 ) , PatchData Z ( : , : , 1 ) , ' r

' ) ;
% p4 b = patch ( PatchData X b ( : , : , 1 ) , PatchData Y b ( : , : , 1 ) , PatchData Z b

( : , : , 1 ) , 'b ' ) ;
% p4 r = patch ( PatchData X r ( : , : , 1 ) , PatchData Y r ( : , : , 1 ) , PatchData Z r

( : , : , 1 ) , 'k ' ) ;
% alpha ( p4 b , 0 . 25 ) ;
% % - - - - - - - - - - - - - - - -
% % - - - - - - - - - -APPEARANCE- - - - - -
% s e t ( p4 b , ' FaceLighting ' , ' phong ' , ' EdgeLighting ' , ' phong ' , ' EdgeColor ' , '

none ' ) ;
% s e t ( p4 b , ' EraseMode ' , ' normal ' ) ;

136 % se t (p4 , ' FaceLighting ' , ' phong ' , ' EdgeLighting ' , ' phong ' , ' EdgeColor ' , 'Red
' )

% s e t ( p4 r , ' FaceLighting ' , ' phong ' , ' EdgeLighting ' , ' phong ' , ' EdgeColor ' , '
Black ' )

% Animation Loop
f o r i t ime =1: n time

s e t (p1 , 'XData ' , PatchData X ( : , : , i t ime ) ) ;
s e t ( p1 b , 'XData ' , PatchData X b ( : , : , i t ime ) ) ;
s e t ( p1 r , 'XData ' , PatchData X r ( : , : , i t ime ) ) ;
s e t (p1 , 'YData ' , PatchData Y ( : , : , i t ime ) ) ;

146 s e t ( p1 b , 'YData ' , PatchData Y b ( : , : , i t ime ) ) ;
s e t ( p1 r , 'YData ' , PatchData Y r ( : , : , i t ime ) ) ;
s e t (p1 , 'ZData ' , PatchData Z ( : , : , i t ime ) ) ;
s e t ( p1 b , 'ZData ' , PatchData Z b ( : , : , i t ime ) ) ;
s e t ( p1 r , 'ZData ' , PatchData Z r ( : , : , i t ime ) ) ;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

% s e t (p2 , 'XData ' , PatchData X ( : , : , i t ime ) ) ;
% s e t ( p2 b , 'XData ' , PatchData X b ( : , : , i t ime ) ) ;
% s e t ( p2 r , 'XData ' , PatchData X r ( : , : , i t ime ) ) ;
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% se t (p2 , 'YData ' , PatchData Y ( : , : , i t ime ) ) ;
156 % se t ( p2 b , 'YData ' , PatchData Y b ( : , : , i t ime ) ) ;

% s e t ( p2 r , 'YData ' , PatchData Y r ( : , : , i t ime ) ) ;
% s e t (p2 , ' ZData ' , PatchData Z ( : , : , i t ime ) ) ;
% s e t ( p2 b , ' ZData ' , PatchData Z b ( : , : , i t ime ) ) ;
% s e t ( p2 r , ' ZData ' , PatchData Z r ( : , : , i t ime ) ) ;
% % - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% s e t (p3 , 'XData ' , PatchData X ( : , : , i t ime ) ) ;
% s e t ( p3 b , 'XData ' , PatchData X b ( : , : , i t ime ) ) ;
% s e t ( p3 r , 'XData ' , PatchData X r ( : , : , i t ime ) ) ;
% s e t (p3 , 'YData ' , PatchData Y ( : , : , i t ime ) ) ;

166 % se t ( p3 b , 'YData ' , PatchData Y b ( : , : , i t ime ) ) ;
% s e t ( p3 r , 'YData ' , PatchData Y r ( : , : , i t ime ) ) ;
% s e t (p3 , ' ZData ' , PatchData Z ( : , : , i t ime ) ) ;
% s e t ( p3 b , ' ZData ' , PatchData Z b ( : , : , i t ime ) ) ;
% s e t ( p3 r , ' ZData ' , PatchData Z r ( : , : , i t ime ) ) ;
% % - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% s e t (p4 , 'XData ' , PatchData X ( : , : , i t ime ) ) ;
% s e t ( p4 b , 'XData ' , PatchData X b ( : , : , i t ime ) ) ;
% s e t ( p4 r , 'XData ' , PatchData X r ( : , : , i t ime ) ) ;
% s e t (p4 , 'YData ' , PatchData Y ( : , : , i t ime ) ) ;

176 % se t ( p4 b , 'YData ' , PatchData Y b ( : , : , i t ime ) ) ;
% s e t ( p4 r , 'YData ' , PatchData Y r ( : , : , i t ime ) ) ;
% s e t (p4 , ' ZData ' , PatchData Z ( : , : , i t ime ) ) ;
% s e t ( p4 b , ' ZData ' , PatchData Z b ( : , : , i t ime ) ) ;
% s e t ( p4 r , ' ZData ' , PatchData Z r ( : , : , i t ime ) ) ;
% % - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

drawnow ;
M( i t ime ) = getframe ( Scene ) ;

end
186 movie2avi (M, ' f l y i n g t o r o l l g o o d . a v i ' , 'FPS ' , 15 , ' compress ion ' , ' none ' , '

QUALITY ' , 100 , 'KEYFRAME ' , 2 ) ;
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Appendix C

Simulink Block Diagram

C.1 System Block Diagram
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Appendix D

ATR Control Code

breaklines

// I2C dev i c e c l a s s ( I2Cdev ) demonstrat ion Arduino sketch f o r MPU6050
c l a s s us ing DMP (MotionApps v2 . 0 )

// 6/21/2012 by J e f f Rowberg <j e f f@rowberg . net>
// Updates should ( hope fu l l y ) always be a v a i l a b l e at https : // github . com/

jrowberg / i 2 c d e v l i b
4 //

// Changelog :
// 2013 -05 -08 - added seamles s Fastwire support
// - added note about gyro c a l i b r a t i o n
// 2012 -06 -21 - added note about Arduino 1 . 0 . 1 + Leonardo

compa t i b i l i t y e r r o r
// 2012 -06 -20 - improved FIFO over f l ow handl ing and s imp l i f i e d read

proce s s
// 2012 -06 -19 - complete ly rearranged DMP i n i t i a l i z a t i o n code and

s imp l i f i c a t i o n
// 2012 -06 -13 - pu l l gyro and a c c e l data from FIFO packet in s t ead

o f read ing d i r e c t l y
// 2012 -06 -09 - f i x broken FIFO read sequence and change i n t e r r up t

de t e c t i on to RISING
// 2012 -06 -05 - add grav i ty - compensated i n i t i a l r e f e r e n c e frame

a c c e l e r a t i o n output
14 // - add 3D math he lpe r f i l e to DMP6 example sketch

// - add Euler output and Yaw/Pitch /Rol l output formats
// 2012 -06 -04 - remove a c c e l o f f s e t c l e a r i n g f o r b e t t e r r e s u l t s (

thanks Sungon Lee )
// 2012 -06 -01 - f i x ed gyro s e n s i t i v i t y to be 2000 deg/ sec in s t ead

o f 250
// 2012 -05 -30 - ba s i c DMP i n i t i a l i z a t i o n working

/∗ ============================================
I2Cdev dev i ce l i b r a r y code i s p laced under the MIT l i c e n s e
Copyright ( c ) 2012 J e f f Rowberg

24 Permiss ion i s hereby granted , f r e e o f charge , to any person obta in ing a
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copy
o f t h i s so f tware and a s s o c i a t ed documentation f i l e s ( the ” Software ”) ,

to dea l
in the Software without r e s t r i c t i o n , i n c l ud ing without l im i t a t i o n the

r i g h t s
to use , copy , modify , merge , publ i sh , d i s t r i bu t e , sub l i c en s e , and/ or

s e l l
c op i e s o f the Software , and to permit persons to whom the Software i s
f u rn i shed to do so , sub j e c t to the f o l l ow i n g cond i t i on s :

The above copyr ight no t i c e and t h i s permis s ion no t i c e s h a l l be inc luded
in

a l l c op i e s or s ub s t an t i a l po r t i on s o f the Software .

34 THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS

IN
THE SOFTWARE.
===============================================
∗/

44
// I2Cdev and MPU6050 must be i n s t a l l e d as l i b r a r i e s , or e l s e the . cpp / .

h f i l e s
// f o r both c l a s s e s must be in the inc lude path o f your p r o j e c t
#inc lude ”I2Cdev . h”

#inc lude ”MPU6050 6Axis MotionApps20 . h”
//#inc lude ”MPU6050 . h” // not nece s sa ry i f us ing MotionApps inc lude f i l e

// Arduino Wire l i b r a r y i s r equ i r ed i f I2Cdev I2CDEV ARDUINO WIRE
implementation

// i s used in I2Cdev . h
54 #i f I2CDEV IMPLEMENTATION == I2CDEV ARDUINO WIRE

#inc lude ”Wire . h”
#end i f

// c l a s s d e f au l t I2C address i s 0x68
// s p e c i f i c I2C addre s s e s may be passed as a parameter here
// AD0 low = 0x68 ( d e f au l t f o r SparkFun breakout and InvenSense

eva lua t i on board )
// AD0 high = 0x69
MPU6050 mpu;
//MPU6050 mpu(0 x69 ) ; // < - - use f o r AD0 high
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64
/∗ ============================================================
NOTE: In add i t i on to connect ion 3 .3 v , GND, SDA, and SCL, t h i s sketch
depends on the MPU-6050 ' s INT pin being connected to the Arduino ' s
ex t e rna l i n t e r r up t #0 pin . On the Arduino Uno and Mega 2560 , t h i s i s
d i g i t a l I /O pin 2 .
∗ =========================================================== ∗/

/∗ ==========================================================
NOTE: Arduino v1 . 0 . 1 with the Leonardo board gene ra t e s a compi le e r r o r

74 when us ing S e r i a l . wr i t e ( buf , l en ) . The Teapot output uses t h i s method .
The s o l u t i o n r e qu i r e s a mod i f i c a t i on to the Arduino USBAPI . h f i l e ,

which
i s f o r t una t e l y simple , but annoying . This w i l l be f i x ed in the next IDE
r e l e a s e . For more in fo , s e e the se l i n k s :

http :// arduino . cc / forum/ index . php/ topic , 1 0 9 9 8 7 . 0 . html
http :// code . goog l e . com/p/ arduino / i s s u e s / d e t a i l ? id=958
∗ ======================================================== ∗/

// uncomment ”OUTPUTREADABLEQUATERNION” i f you want to see the ac tua l
// quatern ion components in a [w, x , y , z ] format ( not best f o r par s ing

84 // on a remote host such as Proce s s ing or something though )
//#de f i n e OUTPUTREADABLEQUATERNION

// uncomment ”OUTPUTREADABLE EULER” i f you want to see Euler ang l e s
// ( in degree s ) c a l c u l a t ed from the quatern ions coming from the FIFO .
// Note that Euler ang l e s s u f f e r from gimbal l ock ( f o r more in fo , s e e
// http :// en . wik iped ia . org /wik i /Gimbal lock )
//#de f i n e OUTPUTREADABLE EULER

// uncomment ”OUTPUTREADABLEYAWPITCHROLL” i f you want to see the yaw/
94 // p i t ch / r o l l ang l e s ( in degree s ) c a l c u l a t ed from the quatern ions coming

// from the FIFO . Note t h i s a l s o r e qu i r e s g rav i ty vec to r c a l c u l a t i o n s .
// Also note that yaw/ p i t ch / r o l l ang l e s s u f f e r from gimbal l ock ( f o r
// more in fo , s e e : http :// en . wik iped ia . org /wik i /Gimbal lock )
#de f i n e OUTPUTREADABLEYAWPITCHROLL

// uncomment ”OUTPUTREADABLEREALACCEL” i f you want to see a c c e l e r a t i o n
// components with g rav i ty removed . This a c c e l e r a t i o n r e f e r e n c e frame i s
// not compensated f o r o r i en t a t i on , so +X i s always +X accord ing to the
// sensor , j u s t without the e f f e c t s o f g rav i ty . I f you want a c c e l e r a t i o n

104 // compensated f o r o r i en t a t i on , us OUTPUTREADABLEWORLDACCEL ins t ead .
//#de f i n e OUTPUTREADABLEREALACCEL

// uncomment ”OUTPUTREADABLEWORLDACCEL” i f you want to see
a c c e l e r a t i o n

// components with g rav i ty removed and adjusted f o r the world frame o f
// r e f e r e n c e (yaw i s r e l a t i v e to i n i t i a l o r i en t a t i on , s i n c e no

magnetometer
// i s pre sent in t h i s case ) . Could be qu i t e handy in some ca s e s .
//#de f i n e OUTPUTREADABLEWORLDACCEL



98

// uncomment ”OUTPUTTEAPOT” i f you want output that matches the
114 // format used f o r the InvenSense teapot demo

//#de f i n e OUTPUTTEAPOT

#de f i n e LED PIN 13 // ( Arduino i s 13 , Teensy i s 11 , Teensy++ i s 6)
bool b l i nkS ta t e = f a l s e ;

124 // MPU con t r o l / s t a tu s vars
bool dmpReady = f a l s e ; // s e t t rue i f DMP i n i t was s u c c e s s f u l
u i n t 8 t mpuIntStatus ; // ho lds ac tua l i n t e r r up t s t a tu s byte from MPU
u in t 8 t devStatus ; // re turn s t a tu s a f t e r each dev i ce opera t i on (0

= succes s , ! 0 = e r r o r )
u i n t 16 t packetS i z e ; // expected DMP packet s i z e ( d e f au l t i s 42 bytes

)
u i n t 16 t f i f oCount ; // count o f a l l bytes cu r r en t l y in FIFO
u in t 8 t f i f o B u f f e r [ 6 4 ] ; // FIFO sto rage bu f f e r

// o r i e n t a t i o n /motion vars
Quaternion q ; // [w, x , y , z ] quatern ion conta ine r

134 VectorInt16 aa ; // [ x , y , z ] a c c e l s en so r
measurements

VectorInt16 aaReal ; // [ x , y , z ] grav i ty - f r e e a c c e l
s enso r measurements

VectorInt16 aaWorld ; // [ x , y , z ] world - frame a c c e l s enso r
measurements

VectorFloat g rav i ty ; // [ x , y , z ] g r av i ty vec to r
f l o a t eu l e r [ 3 ] ; // [ ps i , theta , phi ] Euler ang le con ta ine r
f l o a t ypr [ 3 ] ; // [ yaw , pitch , r o l l ] yaw/ p i t ch / r o l l c on ta ine r

and grav i ty vec to r

// packet s t r u c tu r e f o r InvenSense teapot demo
u i n t 8 t teapotPacket [ 1 4 ] = {

144 ' $ ' , 0x02 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0x00 , 0x00 , ' \ r ' , ' \n ' } ;

// ================================================================
// === INTERRUPT DETECTION ROUTINE ===
// ================================================================

v o l a t i l e bool mpuInterrupt = f a l s e ; // i n d i c a t e s whether MPU
in t e r r up t pin has gone high

void dmpDataReady ( ) {
mpuInterrupt = true ;

154 }

// ================================================================
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// === VARIABLE DEFINITIONS ===
// ================================================================

f l o a t kp r o l l , k i r o l l , k d r o l l ;

// Cont r o l l e r ga in s
f l o a t kp pitch , k i p i t ch , kd p i tch ;
f l o a t kp yaw , ki yaw , kd yaw ;

164 f l o a t ∗ kp adjust , ∗ k i ad ju s t , ∗ kd adjus t ;

f l o a t r o l l e r r o r c u r r e n t , p i t c h e r r o r c u r r e n t , yaw er ro r cu r r en t ;
// Current e r r o r s

f l o a t p i t c h e r r o r f i l t c u r r e n t ;
f l o a t r o l l e r r o r o l d , p i t c h e r r o r o l d , yaw er ro r o ld ;

// Previous e r r o r s
f l o a t p i t c h e r r o r f i l t o l d ;
f l o a t r o l l e r r o r a c cum , p i tch er ror accum , yaw error accum ;

// Accumulated e r r o r s

f l o a t r o l l c o n t r o l , p i t ch con t r o l , yaw contro l ;
// Con t r o l l e r

e f f o r t
f l o a t P te rm ro l l , I t e rm r o l l , D te rm ro l l ;

174 f l o a t P term pitch , I t e rm p i t ch , D term pitch ;
f l o a t P term yaw , I term yaw , D term yaw ;

f l o a t r o l l d e s , p i t ch des , yaw des , yaw rate des ;
// Des i red

a t t i t ud e s
f l o a t r o l l a c t , p i t ch ac t , yaw act , yaw rate ac t ;

// Actual
a t t i t ud e s

f l o a t yaw act o ld ;

// Old a t t i t ud e s
f l o a t r o l l a c t o l d , r o l l a c t f i l t , r o l l f i l t o l d ;

// F i l t e r e d a t t i t ud e s
f l o a t p i t c h a c t o l d , p i t c h a c t f i l t , p i t c h f i l t o l d ;

i n t t h r o t t l e , t h r o t t l e o l d , t h r o t t l e o l d e r , r o l l , p itch , yaw ;

// Commands from GCS
184 char command , bu f f e r 1 [ 3 ] , bu f f e r 2 [ 6 ] ;

//
S e r i a l commands

i n t motor speeds [ 4 ] ;

i n t t0 , t1 ;
//

Times in m i l l i s e c ond s used to c a l c u l a t e dt
i n t dt ; //
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Time i n t e r v a l s i n c e l a s t loop in m i l l i s e c ond s

i n t i , j , enabled , d i sp ;

f l o a t alpha low , RC low , f r eq l ow ;
//

Low pass f i l t e r v a r i a b l e s
194

// ================================================================
// === FUNCTION DEFINITIONS ===
// ================================================================

void i n i t i a l i z e v a r i a b l e s ( void ) ;
void update motors ( void ) ;
void mo to r s i n i t ( void ) ;
void DMP init ( void ) ;

204 void DMP retreival ( void ) ;
void c a l c u l a t e a t t i t u d e s ( void ) ;
void PID( void ) ;
void process commands ( void ) ;

// ================================================================
// === INITIAL SETUP ===
// ================================================================

void setup ( ) {
214 // I n i t i a l i z e Motors

mo to r s i n i t ( ) ;

// con f i gu r e LED f o r output
pinMode (LED PIN , OUTPUT) ;

// I n i t i a l i z e v a r i a b l e s
i n i t i a l i z e v a r i a b l e s ( ) ;

DMP init ( ) ;
224 }

// ================================================================
// === MAIN PROGRAM LOOP ===
// ================================================================

void loop ( ) {
DMP retreival ( ) ;

234 // Get time i n t e r v a l s i n c e l a s t loop
t1 = m i l l i s ( ) ;
dt = ( t1 - t0 ) ;
t0 = t1 ;
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c a l c u l a t e a t t i t u d e s ( ) ;

PID( ) ;

// Add con t r o l e f f o r t and t h r o t t l e command and send to motors
244 i f ( t h r o t t l e>=5&&th r o t t l e <100&&enabled==1){

motor speeds [ 0 ] = t h r o t t l e+p i t ch con t r o l - yaw contro l ;
motor speeds [ 1 ] = th r o t t l e - p i t ch con t r o l - yaw contro l ;
motor speeds [ 2 ] = t h r o t t l e+r o l l c o n t r o l+yaw contro l ;
motor speeds [ 3 ] = th r o t t l e - r o l l c o n t r o l+yaw contro l ;

}
e l s e {

motor speeds [ 0 ] = 0 ;
motor speeds [ 1 ] = 0 ;
motor speeds [ 2 ] = 0 ;

254 motor speeds [ 3 ] = 0 ;
}

update motors ( ) ;

process commands ( ) ;

d i sp++;

//Send s e r i a l data packet
264 i f ( d i sp == 2) {

S e r i a l . p r i n t ( t h r o t t l e ) ;
S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t ( p i t ch des , 2 ) ;
S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t ( p i t ch ac t , 2 ) ;
S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t ( P term pitch ) ;
S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t ( I t e rm p i t ch ) ;

274 S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t ( D term pitch ) ;
S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t l n ( p i t c h c on t r o l ) ;
d i sp = 0 ;

}

} // END LOOP

284
// ================================================================
// === FUNCTIONS ===
// ================================================================

void moto r s i n i t ( void ) {
pinMode (3 ,OUTPUT) ; // Motor 2 BL
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pinMode (9 ,OUTPUT) ; // Motor 3 FL
pinMode (10 ,OUTPUT) ; // Motor 4 BR
pinMode (11 ,OUTPUT) ; // Motor 1 FR

294
TCCR1A = (1<<COM1A1) | (1<<COM1B1) | (1<<WGM10) ; //Enable f a s t 8 - b i t

PWM mode , non i nv e r t i n g on OC1A and OC1B
TCCR1B = (1<<WGM12) | (1<<CS11) ; // F in i sh s e t t i n g up 8 - b i t PWM and s e t

c l o ck p r e s c a l e r f o r ~8 kHz f r e q
TCCR2A = (1<<COM2A1) | (1<<COM2B1) | (1<<WGM21) | (1<<WGM20) ; //Enable

f a s t PWM mode , non i nv e r t i n g on OC2A and OC2B
TCCR2B = (1<<CS21) ; // Set p r e s c a l e r f o r ~8 kHz f r e q
OCR2A = 0 ; // I n i t i a l i z e motors to zero duty cy c l e
OCR2B = 0 ;
OCR1A = 0 ;
OCR1B = 0 ;

}
304

void update motors ( void ) {
f o r ( i n t i =0; i <4; i++){

i f ( motor speeds [ i ]<=0) motor speeds [ i ] = 0 ;
i f ( motor speeds [ i ]>=100) motor speeds [ i ] = 100 ;

}

OCR1B = ( motor speeds [ 0 ] ∗ 255 ) /100 ; // FR motor
OCR2A = ( motor speeds [ 1 ] ∗ 255 ) /100 ; // BL Motor
OCR2B = ( motor speeds [ 2 ] ∗ 255 ) /100 ; // FL Motor

314 OCR1A = ( motor speeds [ 3 ] ∗ 255 ) /100 ; // BR Motor
}

void i n i t i a l i z e v a r i a b l e s ( void ) {
t h r o t t l e = 0 ; // I n i t i a l i z e inputs to d e f au l t ” r e s t i n g ”

s t a t e
r o l l = 50 ;
p i t ch = 50 ;
yaw = 50 ;

324 r o l l d e s = 0 ; // Des i red a t t i t ud e to zero
p i t ch de s = 0 ;
yaw des = 0 ;

r o l l e r r o r a c cum = 0 ; // Accumulated e r r o r s to zero
p i t ch e r ro r accum = 0 ;
yaw error accum = 0 ;

r o l l e r r o r o l d = 0 ; // Previous e r r o r s to zero
p i t c h e r r o r o l d = 0 ;

334 yaw er ro r o ld = 0 ;

k p r o l l = . 5 5 ∗ 4 . 5 ; // Set c o n t r o l l e r ga in s
k i r o l l = . 2 5 ∗ 4 . 5 ∗ . 0 0 1 ;
k d r o l l = 0 .12∗4∗1000 ;
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kp p i tch = 0 . 1 6 0 ;
k i p i t c h = 0 . 2 0 0∗ . 0 0 1 ;
kd p i tch = 0 .055∗1000 ;
kp yaw = . 6 2 5 ;
ki yaw = 0 . 3 7 5∗ . 0 0 1 ;

344 kd yaw = 0 .25∗1000 ;

t0 = 0 ; // Previous time to zero
enabled = 1 ; // Disab le motors by de f au l t
d i g i t a lWr i t e (LED PIN , 1) ;
d i sp = 0 ;

// Set up low pass f i l t e r
f r e q l ow = 1 ;
RC low= 1/(2∗3.14159∗ f r e q l ow ) ;

354 alpha low = 0 .01/ (RC low+0.01) ;
}

void DMP init ( void ) {

// j o i n I2C bus ( I2Cdev l i b r a r y doesn ' t do t h i s automat i ca l l y )
#i f I2CDEV IMPLEMENTATION == I2CDEV ARDUINO WIRE

Wire . begin ( ) ;
TWBR = 24 ; // 400kHz I2C c lo ck (200kHz i f CPU i s 8MHz)

#e l i f I2CDEV IMPLEMENTATION == I2CDEV BUILTIN FASTWIRE
364 Fastwire : : setup (400 , t rue ) ;

#end i f

// i n i t i a l i z e s e r i a l communication
S e r i a l . begin (57600) ;
whi l e ( ! S e r i a l ) ; // wait f o r Leonardo enumeration , o the r s cont inue

immediately

// NOTE: 8MHz or s lower host p roce s so r s , l i k e the Teensy @ 3 .3 v or
Ardunio

// Pro Mini running at 3 .3 v , cannot handle t h i s baud ra t e r e l i a b l y due
to

374 // the baud timing being too misa l i gned with p roc e s s o r t i c k s . You must
use

// 38400 or s lower in these cases , or use some kind o f ex t e rna l
s epara te

// c r y s t a l s o l u t i o n f o r the UART timer .

// i n i t i a l i z e dev i ce
S e r i a l . p r i n t l n (F( ” I n i t i a l i z i n g I2C dev i c e s . . . ” ) ) ;
mpu. i n i t i a l i z e ( ) ;

// v e r i f y connect ion
S e r i a l . p r i n t l n (F( ”Test ing dev i c e connect i ons . . . ” ) ) ;

384 S e r i a l . p r i n t l n (mpu. tes tConnect ion ( ) ? F( ”MPU6050 connect ion s u c c e s s f u l
” ) : F( ”MPU6050 connect ion f a i l e d ” ) ) ;
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// wait f o r ready
S e r i a l . p r i n t l n (F( ”Send any charac t e r to begin : ” ) ) ;
whi l e ( S e r i a l . a v a i l a b l e ( ) && S e r i a l . read ( ) ) ; // empty bu f f e r
whi l e ( ! S e r i a l . a v a i l a b l e ( ) ) ; // wait f o r data
whi l e ( S e r i a l . a v a i l a b l e ( ) && S e r i a l . read ( ) ) ; // empty bu f f e r again

// load and con f i gu r e the DMP
S e r i a l . p r i n t l n (F( ” I n i t i a l i z i n g DMP. . . ” ) ) ;

394 devStatus = mpu. dmp In i t i a l i z e ( ) ;

mpu. setXGyroOffset (39) ;
mpu. setYGyroOffset (68) ;
mpu. setZGyroOffset (230) ;
mpu. s e tZAcce lO f f s e t (1788) ; // 1688 f a c t o ry d e f au l t f o r my t e s t chip

// make sure i t worked ( r e tu rn s 0 i f so )
i f ( devStatus == 0) {

// turn on the DMP, now that i t ' s ready
404 S e r i a l . p r i n t l n (F( ”Enabling DMP. . . ” ) ) ;

mpu. setDMPEnabled ( t rue ) ;

// enable Arduino i n t e r r up t de t e c t i on
S e r i a l . p r i n t l n (F( ”Enabling i n t e r r up t de t e c t i on ( Arduino ex t e rna l

i n t e r r up t 0) . . . ” ) ) ;
a t t a ch In t e r rup t (0 , dmpDataReady , RISING) ;
mpuIntStatus = mpu. ge t In tS ta tu s ( ) ;

// s e t our DMP Ready f l a g so the main loop ( ) func t i on knows i t ' s
okay to use i t

S e r i a l . p r i n t l n (F( ”DMP ready ! Waiting f o r f i r s t i n t e r r up t . . . ” ) ) ;
414 dmpReady = true ;

// get expected DMP packet s i z e f o r l a t e r comparison
packetS i z e = mpu. dmpGetFIFOPacketSize ( ) ;

}
e l s e {

// ERROR!
// 1 = i n i t i a l memory load f a i l e d
// 2 = DMP con f i gu r a t i on updates f a i l e d
// ( i f i t ' s going to break , u sua l l y the code w i l l be 1)

424 S e r i a l . p r i n t (F( ”DMP I n i t i a l i z a t i o n f a i l e d ( code ” ) ) ;
S e r i a l . p r i n t ( devStatus ) ;
S e r i a l . p r i n t l n (F( ” ) ” ) ) ;

}

}

void DMP retreival ( void ) {
// i f programming f a i l e d , don ' t t ry to do anything
i f ( ! dmpReady) re turn ;

434
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// wait f o r MPU in t e r r up t or ext ra packet ( s ) a v a i l a b l e
whi l e ( ! mpuInterrupt && f i f oCount < packetS i z e ) {
}

// r e s e t i n t e r r up t f l a g and get INT STATUS byte
mpuInterrupt = f a l s e ;
mpuIntStatus = mpu. g e t In tS ta tu s ( ) ;

// get cur rent FIFO count
444 f i f oCount = mpu. getFIFOCount ( ) ;

// check f o r over f l ow ( t h i s should never happen un l e s s our code i s too
i n e f f i c i e n t )

i f ( ( mpuIntStatus & 0x10 ) | | f i f oCount == 1024) {
// r e s e t so we can cont inue c l e an l y
mpu. resetFIFO ( ) ;
S e r i a l . p r i n t l n (F( ”FIFO over f l ow ! ” ) ) ;

// otherwise , check f o r DMP data ready i n t e r r up t ( t h i s should happen
f r e quen t l y )

}
454 e l s e i f ( mpuIntStatus & 0x02 ) {

// wait f o r c o r r e c t a v a i l a b l e data length , should be a VERY shor t
wait

whi l e ( f i f oCount < packetS i z e ) f i f oCount = mpu. getFIFOCount ( ) ;

// read a packet from FIFO
mpu. getFIFOBytes ( f i f oBu f f e r , packe tS i z e ) ;

// t rack FIFO count here in case the re i s > 1 packet a v a i l a b l e
// ( t h i s l e t s us immediately read more without wai t ing f o r an

i n t e r r up t )
f i f oCount -= packetS i z e ;

464
// Get Euler ang l e s in degree s
mpu. dmpGetQuaternion(&q , f i f o B u f f e r ) ;
mpu. dmpGetGravity(&grav i ty , &q) ;
mpu. dmpGetYawPitchRoll ( ypr , &q , &grav i ty ) ;

}

}

474 void c a l c u l a t e a t t i t u d e s ( void ) {
// Get cur rent a t t i t ud e
r o l l a c t = ( ypr [ 2 ] ∗ . 7 0 7 1 - ypr [ 1 ] ∗ . 7 0 7 1 ) ∗180/M PI ∗1 . 4 7 ; // Actual

r o l l
p i t c h a c t = ( ypr [1 ]∗ . 7071+ ypr [ 2 ] ∗ . 7 0 7 1 ) ∗180/M PI ∗1 . 4 7 ; // Actual

p i t ch
yaw act = ypr [ 0 ]∗180/M PI ; // Actual yaw
yaw rate ac t = ( yaw act - yaw act o ld ) ∗1000/ dt ; // Yaw

ra t e in [ / s ] ( dt i s in ms , so mult ip ly by 1000 to get in seconds
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)

r o l l a c t f i l t = r o l l f i l t o l d+alpha low ∗( r o l l a c t - r o l l f i l t o l d ) ;
r o l l f i l t o l d = r o l l a c t f i l t ;

484
p i t c h a c t f i l t = p i t c h f i l t o l d+alpha low ∗( p i t ch ac t - p i t c h f i l t o l d ) ;

// Get de s i r ed a t t i t ud e
r o l l d e s = ( r o l l - 50 ) ∗1 ; // Max ang le when s t i c k s are

mashed i s 50∗1= 50 [ ]
p i t ch de s = ( pitch -50 ) ∗1 ;
// I f I 'm re c e i v i n g an a c t i v e yaw command , update de s i r ed heading
i f (yaw > 51 | | yaw < 49) {

494 yaw des += (yaw -50 ) ∗ . 0 4 ;
}
// Else , j u s t maintain o ld heading

}

void PID( void ) {

// Ca lcu la te cur rent e r r o r s
r o l l e r r o r c u r r e n t = r o l l d e s - r o l l a c t ; // Current

Rol l e r r o r
504 r o l l e r r o r a c cum += r o l l e r r o r c u r r e n t ∗dt ; //

Accumulated Rol l e r r o r

p i t c h e r r o r c u r r e n t = p i t ch de s - p i t c h a c t ;
//

Current Pitch e r r o r
p i t c h e r r o r f i l t c u r r e n t = p i t c h e r r o r f i l t o l d+alpha low ∗(

p i t c h e r r o r c u r r e n t - p i t c h e r r o r f i l t o l d ) ; // Current Pitch
e r r o r f i l t e r e d

p i t ch e r ro r accum += p i t c h e r r o r c u r r e n t ∗dt ;
//

Accumulated Pitch e r r o r

yaw er ro r cu r r en t = yaw des - yaw act ; // Current
Yaw e r r o r

yaw error accum += yaw er ro r cu r r en t ∗dt ; //
Accumulated Yaw e r r o r

514 // Ca lcu la te c o n t r o l l e r e f f o r t s
P t e rm ro l l = kp r o l l ∗ r o l l e r r o r c u r r e n t ;
I t e rm r o l l = k i r o l l ∗ r o l l e r r o r a c cum ;
D te rm ro l l = kd r o l l ∗( r o l l e r r o r c u r r e n t - r o l l e r r o r o l d ) /dt ;

P term pitch = kp p i tch ∗ p i t c h e r r o r c u r r e n t ;
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I t e rm p i t ch = k i p i t c h ∗ p i t ch e r ro r accum ;
D term pitch = kd p i tch ∗( p i t c h e r r o r c u r r e n t - p i t c h e r r o r o l d ) /dt ;

524 r o l l c o n t r o l = P te rm ro l l + I t e rm r o l l + D te rm ro l l ;
p i t c h c on t r o l = P term pitch + I t e rm p i t ch + D term pitch ;
yaw contro l = kp yaw∗ yaw er ro r cu r r en t + ki yaw∗yaw error accum +

kd yaw ∗( yaw er ror cur rent - yaw er ro r o ld ) /dt ;

// Current e r r o r s become prev ious e r r o r s
r o l l e r r o r o l d = r o l l e r r o r c u r r e n t ;
p i t c h e r r o r o l d = p i t c h e r r o r c u r r e n t ;
p i t c h e r r o r f i l t o l d = p i t c h e r r o r f i l t c u r r e n t ;
yaw er ro r o ld = yaw er ro r cu r r en t ;

534 r o l l a c t o l d = r o l l a c t ;
p i t c h a c t o l d = p i t c h a c t ;
yaw act o ld = yaw act ;

}

void process commands ( void ) {
// I f 1 cha rac t e r ava i l ab l e , dea l with i t

544 i f ( S e r i a l . a v a i l a b l e ( ) == 2) {
command = S e r i a l . read ( ) ;
S e r i a l . read ( ) ;
/∗
i f (command=='R ' ) {
record = 1 ;
}

e l s e i f (command=='T ' ) {
record = 0 ;

554 f o r ( i =0; i++;i<j +1){
S e r i a l . p r i n t ( p i t ch de s r e c o rd ed [ i ] , 2 ) ;
S e r i a l . p r i n t (” , ” ) ;
S e r i a l . p r i n t ( p i t c h a c t r e c o rd ed [ i ] , 2 ) ;
S e r i a l . p r i n t (” , ” ) ;
S e r i a l . p r i n t l n ( dt r eco rded [ i ] , 2 ) ;
}
j = 0 ;
}
∗/

564 }

// I f 12 cha ra c t e r s are ava iab le , a s s i gn TRPY va lues
e l s e i f ( S e r i a l . a v a i l a b l e ( ) == 13) {

S e r i a l . read ( ) ; // read the T
f o r ( i =0; i <2; i++){

bu f f e r 1 [ i ] = S e r i a l . read ( ) ;
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}
bu f f e r 1 [ i ] = ' ' ;
t h r o t t l e = a t o i ( bu f f e r 1 ) ;

574 t h r o t t l e o l d e r = t h r o t t l e o l d ;
t h r o t t l e o l d = t h r o t t l e ;

S e r i a l . read ( ) ; // read the R
f o r ( i =0; i <2; i++){

bu f f e r 1 [ i ] = S e r i a l . read ( ) ;
}
bu f f e r 1 [ i ] = ' ' ;
r o l l = a t o i ( bu f f e r 1 ) ;

584 S e r i a l . read ( ) ; // read the P
f o r ( i =0; i <2; i++){

bu f f e r 1 [ i ] = S e r i a l . read ( ) ;
}
bu f f e r 1 [ i ] = ' ' ;
p i t ch = a t o i ( bu f f e r 1 ) ;

S e r i a l . read ( ) ; // read the Y
f o r ( i =0; i <2; i++){

bu f f e r 1 [ i ] = S e r i a l . read ( ) ;
594 }

bu f f e r 1 [ i ] = ' ' ;
yaw = ato i ( bu f f e r 1 ) ;

i f ( t h r o t t l e o l d e r < 5 && th r o t t l e >= 5) {
enabled = 1 ;
yaw des = yaw act ;
r o l l e r r o r a c cum = 0 ;
p i t ch e r ro r accum = 0 ;
yaw error accum = 0 ;

604 d i g i t a lWr i t e (LED PIN , 1) ;
}
/∗
e l s e i f ( t h r o t t l e == 0 && yaw == 0) {
enabled = 0 ;
d i g i t a lWr i t e (LED PIN , 0) ;
}∗/

}

// I f 7 cha ra c t e r s ava iab le , a s s i gn gain va lue s
614 /∗ e l s e i f ( S e r i a l . a v a i l a b l e ( ) == 7 && enabled == 0) {

command = S e r i a l . read ( ) ;

i f (command == 'A ' ) {
f o r ( i =0; i <5; i++){

bu f f e r 2 [ i ] = S e r i a l . read ( ) ;
}
bu f f e r 2 [ i ] = ' ' ;
kp = ( f l o a t ) a t o l ( bu f f e r 2 ) /1000 ;
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d i g i t a lWr i t e (LED PIN , 0) ;
624 de lay (100) ;

d i g i t a lWr i t e (LED PIN , 1) ;
}

e l s e i f (command == 'B ' ) {
f o r ( i =0; i <5; i++){

bu f f e r 2 [ i ] = S e r i a l . read ( ) ;
}
bu f f e r 2 [ i ] = ' ' ;
k i = ( f l o a t ) a t o l ( bu f f e r 2 ) /100000;

634 d i g i t a lWr i t e (LED PIN , 0) ;
de lay (100) ;
d i g i t a lWr i t e (LED PIN , 1) ;

}

e l s e i f (command == 'C ' ) {
f o r ( i =0; i <5; i++){

bu f f e r 2 [ i ] = S e r i a l . read ( ) ;
}
bu f f e r 2 [ i ] = ' ' ;

644 kd = ( f l o a t ) a t o l ( bu f f e r 2 ) /1000 ;
d i g i t a lWr i t e (LED PIN , 0) ;
de lay (100) ;
d i g i t a lWr i t e (LED PIN , 1) ;

}

e l s e i f (command == 'D ' ) {
f o r ( i =0; i <5; i++){

bu f f e r 2 [ i ] = S e r i a l . read ( ) ;
}

654 bu f f e r 2 [ i ] = ' ' ;
kp yaw = ( f l o a t ) a t o l ( bu f f e r 2 ) /1000 ;
d i g i t a lWr i t e (LED PIN , 0) ;
de lay (100) ;
d i g i t a lWr i t e (LED PIN , 1) ;

}

e l s e i f (command == 'E ' ) {
f o r ( i =0; i <5; i++){

bu f f e r 2 [ i ] = S e r i a l . read ( ) ;
664 }

bu f f e r 2 [ i ] = ' ' ;
ki yaw = ( f l o a t ) a t o l ( bu f f e r 2 ) /1000 ;
d i g i t a lWr i t e (LED PIN , 0) ;
de lay (100) ;
d i g i t a lWr i t e (LED PIN , 1) ;

}

e l s e i f (command == 'F ' ) {
f o r ( i =0; i <5; i++){

674 bu f f e r 2 [ i ] = S e r i a l . read ( ) ;
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}
bu f f e r 2 [ i ] = ' ' ;
kd yaw = ( f l o a t ) a t o l ( bu f f e r 2 ) /1000 ;
d i g i t a lWr i t e (LED PIN , 1) ;
de lay (100) ;
d i g i t a lWr i t e (LED PIN , 0) ;

}

}∗/
684

// I f none o f the opt ions above , something got l o s t in t ransmi s s i on so
c l e a r bu f f e r

e l s e {
whi le ( S e r i a l . a v a i l a b l e ( ) && S e r i a l . read ( ) ) ; // empty bu f f e r

}
}


