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ABSTRACT
The improper use of artificial light causing skyglow is detri-

mental to many types of wildlife and potentially causes irregular
human sleeping patterns. Studies have been performed to analyze
light pollution on a global scale. However, light pollution data on a
local scale is not often available and the effects at local scale have
rarely been studied. Herein, a new way of evaluating light pol-
lution at local scale by deploying a custom-designed autonomous
light assessment drone (ALAD) is described. The ALAD is de-
signed and equipped with a sky quality meter (SQM) to measure
skyglow and a low-cost illuminance sensor to measure light from
artificial sources. Outdoor field tests are performed at a remote
site in central Utah and the measured results are validated against
data from lightpollutionmap.info. The SQM measurements are in
agreement with the estimates from the light pollution map, and the
initial results demonstrate feasibility of the ALAD for local-scale
skyglow assessment.

1 Introduction
Light pollution, illumination of the night sky caused by arti-

ficial light, is detrimental to wildlife and has been shown to nega-
tively affect human sleeping patterns. For example, light pollution
can change how sea turtles select nesting sites, which can inter-
fere with hatchlings finding the sea once born [1]. Satellite images
hold information on the global impact of light pollution and are
examined in detail [2]. However, the effect of light pollution on a
local scale has not been well studied. Local-scale light information
can be used to minimize the impact in select regions, as well as to
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Figure 1: Illustration of how autonomous light assessment drone
can be used to gather light pollution data in hard to reach places.

establish standards for lighting fixtures and allowable emissions.
The most advanced method of measuring light pollution at a small
scale involves handheld technology, which limits data collection to
reachable areas. The contribution of this paper is describing a new
way of evaluating light pollution at a local scale using a custom-
designed autonomous light assessment drone (ALAD). Figure 1
illustrates the application of the ALAD and how it can be used to
gather data that has not been accessible before, such as above light
fixtures and in urban environments with buildings and obstructions.
The vehicle is designed and equipped with an upward-facing sky
quality meter to measure skyglow and a downward low-cost illu-
minance sensor to measure light from artificial sources.
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Little knowledge is available on the effects of light pollution
at a local scale. Studies have been performed using satellites to
estimate how light pollution affects the planet at a global scale [3].
However, these studies do not show how light pollution varies with
height or at a fine geographical level. The proposed ALAD system
facilitates gathering light pollution data outside of human reach and
at the scale of individual light fixtures. The ALAD system is also
designed to be used in classes at the University of Utah to analyze
the effects of light pollution as part of a new educational program
on Dark Skies Studies. Ultimately, drones like these may also help
to reduce the negative effects of new light sources in cities, by iden-
tifying those that are not properly configured.

2 Measuring Light Pollution
Two key metrics for measuring light pollution are sky quality

(measured in mags/arcsec2) and illuminance (measured in lux, or
lx). These variables are measured with a sky quality meter (SQM)
and an illuminance sensor, respectively [4, 5]. The mags/arcsec2

measurement provides a quantification of sky brightness for a sec-
tion of the night sky on a logarithmic scale, while illuminance mea-
sures luminous flux normal to a surface. While SQM and illu-
minance data have been collected at the ground level, and some
data has been collected and analyzed by satellites at the orbital
level [4, 6]. Unfortunately, no data appears to have been collected
by near ground aerial vehicles (<400 ft above ground).

Sky quality meters are portable handheld devices that are
widely used to measure light pollution [7–9]. The sensor has been
used to study the variation of light pollution across different re-
gions [7]. Additionally, SQM measurements have been used to
characterize the effects of city light on rural areas [9]. These stud-
ies measure sky quality near ground level, but have yet to measure
sky quality beyond arms reach.

Multiple studies can be found that measure illuminance for the
safety of motorists, cyclists, and pedestrians [10–14]. The illumi-
nance was measured in these studies, but the data was not used to
measure the light pollution emanating from light fixtures.

Drones are an increasingly popular platform for remote and
novel sensing operations such as autonomous chemical plume lo-
calization, field crop phenotyping, and magnetic anomaly detec-
tion [15–20]. The remotely-controlled autonomous vehicles are
an excellent choice for these applications because they are easy to
transport, quick to deploy, and they rapidly collect data over large
areas including places that humans cannot easily reach [20]. Addi-
tional features such as autonomous flight with data collection and
obstacle avoidance can increase quality of data and safety [16,21].
While the above studies and many others have used drones for re-
mote sensing of various types, none have yet applied drones to
measure light pollution.

3 System Design
This section describes the details of the ALAD design. Fig-

ure 2 shows the complete vehicle and the key components.

Figure 2: The custom-designed autonomous light assessment
drone (ALAD) and highlights of key components.

3.1 Drone Platform
A quad-rotor aerial vehicle (quadcopter drone) that serves as

the flying-sensor platform was built from scratch using carbon fiber
material for weight reduction. The vehicle carries two on-board
light sensors, and it is designed to maximize flight time. The flight
controller is a Pixhawk 3 Pro, which interfaces with a Odroid XU4
single board computer (SBC) with an A7 Octa-core CPU and 2GB
of LPDDR3. The SBC runs the Robot Operating System (ROS)
for motion control, data collection, and mission execution. During
operation, for example, desired waypoints are communicated to
the SBC which then controls the flight controller for vehicle con-
trol and navigation. To communicate with the ground station, two
forms of communication were used. The first is a 2.4/5 GHz WiFi
module for short-range communication. For long-range commu-
nication, a 900 MHz Xbee module is used. To estimate the height
relative to local ground, a downward-facing LightWare SF11-C Li-
DAR is used. The LiDAR unit is not affected by changes in ambi-
ent light making it ideal on the ALAD system. The quadcopter is
powered by a DJI Tb48s 5.7 Ah Li-Po battery. Power drawn from
the SBC is negligible compared to the power consumed by the mo-
tors. Propulsion is achieved through four Antigravity 4006 KV380
motors with Tiger 15x5 carbon fiber propellers. The propeller-
motor combination results in 3.2 kg of thrust at 50% throttle. With
all equipment loaded onto the quadcopter, hover can be sustained
for 25 minutes using a single battery pack.

3.2 Light Sensing
Two light sensors are mounted on the ALAD to measure

light pollution: a Unihedron sky quality meter and a low-cost
Texas Instruments OPT3001 illuminance sensor. The SQM mea-
sured sky brightness, recorded in magnitudes per square arcsecond
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Figure 3: Wiring diagram for the low-cost TI OPT3001 illumi-
nance sensor to the Odroid XU4 SBC shifter shield.

(mags/arcsec2). The magnitude is calculated by

m1 =−2.5log10(F)+m2, (1)

where m1 is the magnitude, F is the intensity of the light source,
and m2 is a reference magnitude calibrated by the manufacturer. A
change in 0.1 mags results in roughly a 10% change in flux, while
a change of 5 mags results in a change of 100 in flux. This is the
preferred way of measuring light pollution by astronomers.

The SQM was factory calibrated. The greater the light shining
on the SQM, the smaller the measurement. An average reading of a
sidewalk lit at night is around 14 mags/arcsec2. A reading of 20 or
higher means almost no light pollution. The frequency of the read-
ings ranged from 0 Hz to 50 Hz and is dependent on the amount of
light hitting the sensor. The SQM sent data measurements through
USB communication when the ALAD is at the pre-specified way-
points during operation.

The downward facing low-cost TI OPT3001 illuminance sen-
sor measures only visible light from all light sources. The range of
measurement spans from 0.01 lx up to 83,000 lx. The sensor can
be sampled at 100 milliseconds or 800 milliseconds. The lower
sampling rate increases the accuracy of the readings at lower light
levels. The sensor communicates with the Odroid SBC through an
I2C link, as shown in Fig. 3, and the data is recorded at the specified
waypoints. The illuminance sensor accuracy was validated through
the use of a BTS256-E Luxmeter. Validation results are shown in
Fig. 4. A preliminary flight test was performed at night under an
LED lamp and at the start of a trailhead where there was very little
light. The illuminance data from the flight test are shown in Fig. 5.

3.3 Ground Station and Software Architecture
A laptop computer running custom-designed software serves

as the ground station to control and launch the ALAD. The
software, hardware, and communication architecture is shown in
Fig. 6, and the arrows in the figure represents the flow of infor-
mation between various nodes. Waypoint lists and execution com-
mands are sent to the ALAD. ALAD status and navigation data are
sent back to the ground station.

An example of the custom GUI is shown in Fig. 7, illustrat-
ing the key features of the software package. The ground station
allows users to select the mission types (i.e., waypoint missions
or raster scans), start the mission/test, and send control commands

Figure 4: Calibration of the TI OPT3001 illuminance sensor using
a BTS256-E light meter.

Figure 5: Preliminary results from TI OPT3001 illuminance sensor
mounted to the ALAD: (a) illuminance data underneath an LED
lamp, (b) illuminance data at the start of a trailhead with no direct
light sources.

to the ALAD. Once the ALAD receives start flight command, it
is completely independent of the ground station and operates au-
tonomously. If the ALAD went out of range from the ground sta-
tion’s communication, it is programmed to complete its mission
independently from the ground station.

4 Measurement Modes
The ALAD can operate in two different measurement modes:

(1) manual waypoint mode and (2) raster-scan mode. In manual
waypoint mode, measurements are made at specific locations set by
the user. In raster-scanning mode, a selected area is autonomously
scanned and data gathered at distributed locations. The results pre-
sented herein are focused on specific waypoints directly overhead
of light posts. The ALAD was programmed to collect SQM and
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Figure 6: Software, hardware, and communication architecture.
Arrows represents the flow of information between various nodes.

illuminance data at each waypoint. The data consisted of time-
stamped illuminance data, GPS coordinates, and altitude measure-
ments from the onboard LiDAR range sensor.

5 Outdoor Field Experiments and Results
To demonstrate feasibility of the ALAD system, light assess-

ment experiments were conducted in the town of Helper, Utah,
where the town has a population of around 2,000 [22]. Helper
was selected because of its small size and its ranking as a class
4 site on the Bortle scale (mildly polluted rural and suburban ar-
eas). Tests were performed in dark environments and above dif-
ferent types of light fixtures and the light SQM and illuminance
data were recorded. Full-scale experiments were conducted to de-
termine which light sources (specifically lampposts) were emitting
the most light, and therefore contributing the most to light pol-
lution. The experiment was performed on Friday, February 20th,
2020 when the moon was in its third-quarter close to a new moon.
As the city of Helper has been working towards a Dark Skies cer-
tification, their mayor was interested in determining how to reduce

Figure 7: Custom-designed GUI for selecting mission types, spec-
ifying waypoints, and real-time location information of the ALAD.

light pollution. The full-scale test included performing sensor read-
ings in two areas: the parking lot of a cemetery and Main Street.

The cemetery parking lot was determined to have only one
light source, making it an almost entirely dark area, allowing for
data to be collected over a lamppost that was unaffected by any
other light source. Main Street was determined to be well-lit with
various models of lampposts, allowing for data to be collected on
the light emitted from different types of lampposts. Both flight tests
were performed after astronomical dusk to ensure completely dark
skies.

For the first test at the cemetery, the ALAD was initially flown
at altitudes of 2 meters and 10 meters in the parking lot, away from
the shielded lamppost, to record sensor data in near-total darkness.
It was then flown directly over the lamppost at an altitude of 10
meters and 15 meters to determine the amount of light being emit-
ted into the sky shown (see Fig. 8). The TI OPT3001 illuminance
sensor readings can be seen in Fig. 9, and the SQM sensor readings
can be seen in Fig. 9.

The TI OPT3001 illuminance sensor data, as seen in Fig. 9,
shows illuminance values that follow expectations at the Cemetery.
For the 2 and 10 meter flights in the dark parking lot, the recorded
values came out to be 0.08 and 0.03 (lx). There is little variation
in these two values, as is expected in an almost completely dark
area. For the 10 and 15 meter flights over the shielded lamppost,
the recorded values were 1.13 and 0.95 (lx).

The SQM sensor data is presented in Fig. 9. For the 2 and 10
meter flights in the dark parking lot, the recorded values came out
to be 20.85 and 20.86 mags/arcsec2. Again, as might be expected
in a very dark area, there is little variation in recorded values at dif-
ferent heights. These values also fall in class 4 on the Bortle scale
Fig. 11, which represents the transition between rural and suburban
environments. For the 10 and 15 meter flights over the shielded
lamppost, the recorded values were 20.57 and 20.68 mags/arcsec2.
These values also fall in class 4, which is consistent with a mea-
surement above a shielded light source.

For the second test on Main Street, the ALAD was flown in
the center of the road at a low altitude of 3 meters, then at a high
altitude of 15 meters (above the surrounding lampposts). Multi-
ple tests were performed here where the ALAD moved down Main
Street so that it was positioned in-between both LED and sodium-
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Figure 8: Photographs of team conducting experiments in Helper,
Utah. Top left shows ALAD measuring light pollution above a sin-
gle light post near town cemetery and top right shows experiments
on Main Street of Helper.

vapor (SV) lampposts. For this test, TI OPT3001 illuminance sen-
sor readings are shown in Fig. 9 and the SQM sensor readings are
shown in Fig. 9.

The TI OPT3001 illuminance sensor data, as seen in Fig. 9,
shows illuminance values that fit expectations for Main Street. The
three flights over LED lampposts for the 3 and 10 meter flights
were averaged, and the values came out to be 1.61 and 1.79 lx.
The sodium-vapor (SV) lamppost values recorded were 2.71 and
1.89 lx. These values fall within the expected range: as the sensor
was facing downwards, the data at 3 meters was expected to be

Figure 9: (a) Mean illuminance sensor and (b) Mean SQM data.
Red bars indicate 95% confidence interval; black and green are
cemetery readings in complete darkness and above a light post,
blue and yellow are LED and low-pressure sodium vapor light
posts. Data taken on Main Street.

lower than the data collected above the light sources at 10 meters.
The values are within a range that is to be expected for an urban
street at night.

The SQM sensor data, as shown in Fig. 9, shows very reason-
able readings on Main Street. The averaged three flights over the
shielded LED lampposts at 3 and 10 meters came out to 16.59 and
20.26 mags/arcsec2, and the sodium-vapor (SV) lamppost values
were 13.88 and 20.83 mags/arcsec2. For the 3-meter height tests,
the values for the LED and SV lights both fall in class 8-9 on the
Bortle scale Fig. 11, which represents a city sky. This result is con-
sistent for data recorded under the light sources, resulting in direct
exposure to the lights. For the 10-meter height tests, the values
fall in class 5 and class 4 on the Bortle scale, which represents the
transition between rural and suburban environments. These values
are expected as SQM values are higher (less light pollution) above
a shielded light source. The SV light is brighter than the LED
when underneath the lamppost, but darker when above; thus, the
SV lampposts appear to contribute less light pollution as expected
due to reduced atmospheric scattering at longer wavelengths.
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6 Discussion
This paper explored the application of an aerial vehicle to ana-

lyze light pollution vertically outside the reach of traditional hand-
held instruments. A field test was performed in Helper, Utah, to
analyze the effects of light pollution from various lampposts. As a
result, the LED lampposts were shown to have lower illuminance
and SQM effects on the surrounding environment compared to the
sodium vapor lamp post.

Exploring light pollution on a local scale is not only impor-
tant to minimize the amount of light being emitted into the sky, but
also to reduce its negative impacts on wildlife and human sleeping
patterns. Figure 10 shows the intensities of light pollution across
the United States, estimated from satellite data, and Fig. 11 shows
various locations ranked by their SQM value and Bortle scale mea-
surement.

Future experiments are planned to model the effects of light
pollution in three-dimensional space, as well as with a camera to
take raw photos and analyze the spectral intensity of light sources.
Physical experiments can also be conducted that test different light
fixture designs and light source combinations.

Figure 10: Zenith sky brightness across the United States showing
estimated SQM readings in mags/arcsec2 [23]. SQM data is es-
timated through satellites measuring light which has escaped into
the atmosphere.

7 Conclusions and Future Work
Light pollution is known to be detrimental to wildlife and to

negatively affect human sleeping patterns. In the past, studies were
pursued to evaluate the global impact of light pollution using satel-
lites [3]. However, data on light pollution at a local scale and at
various heights has not been available until now. Handheld tech-
nology has limited data collection to reachable areas. This paper
presented a novel approach to gathering light pollution data that has
been inaccessible before. An autonomous light assessment drone
was designed that was equipped with an SQM to measure reflected
light and with an illuminance sensor to measure direct light from
specific sources. Future work includes gathering SQM data at ad-
ditional locations and creating models of light pollution in three-
dimensional space. Methods will also be deduced to improve sky
quality metrics, which will contribute to quality of life as well as
enhancing tourism for certain locations.
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