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Abstract

Iterative Learning Control of Hysteresis in Piezo-based Nano-positioners:

Theory and Application in Atomic Force Microscopes

by Kam K. Leang

Chair of Supervisory Committee:

Associate Professor Santosh Devasia
Mechanical Engineering

Atomic force microscopy (AFM)-based systems are the key enabling tools in emerging

nanotechnologies, such as high-density data storage devices, semiconductor lithography,

and nanosurgery. By using piezo-based positioners (actuators), the AFM-probe tip can be

moved relative to the sample surface for observing, manipulating, and fabricating objects at

nanometer scale. However, a critical problem in AFM is nano-precision control of the piezo

positioner. In particular, hysteresis (as well as creep and vibration) in piezos makes precise

positioning a challenge and the relatively large tracking error due to hysteresis, which is

substantially larger than 100 nm, is not sufficient for emerging nanoscale applications. This

thesis solves an iterative learning control (ILC) problem for hysteretic systems to achieve

nano-precision positioning. Specifically, an ILC algorithm is proposed and applied to com-

pensate for hysteresis-caused positioning error in piezo-based systems, such as AFMs, and

a proof of convergence, based on the Preisach hysteresis model, is presented. Moreover, the

required number of iterations to achieve a desired tracking precision is quantified, and the

method is experimentally evaluated on a commercial AFM system. Results show that the

proposed ILC algorithm reduces the tracking error to the noise level of the sensor measure-

ment.
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Chapter 1

INTRODUCTION

This thesis solves an iterative learning control (ILC) problem for hysteretic systems,

such as piezo-based nano-positioners. The objective of this work is to achieve nano(high)-

precision control by compensating for hysteresis effect. It is noted that piezo positioner-

based devices, such as atomic force microscopes (AFMs), are used in emerging nanotech-

nologies for creating, manipulating and investigating objects down at the atomic scale [1].

However, loss in precision due to the effect of hysteresis (as well as creep and vibration)

limit the performance of piezo-based devices [2]. Currently, feedback and model-based feed-

forward control can minimize the tracking error to 2-5% of the displacement range [3, 4, 5].

However, even at this level of precision relatively large error remains. For example, 2%

error over a scan range of 50 micrometers leaves 1 micrometer (1000 nanometers) of error,

which is not sufficient for nanoscale applications that require less than 100 nm precision,

for example, nanofabrication and nanosurgery. Therefore, the critical need to achieve nano-

precision positioning motivates the effort to correct for positioning errors due to hysteresis

(as well as creep and vibration effects).

Specifically, this thesis proves convergence of an ILC algorithm for hysteretic systems. In

the analysis, the Presiach hysteresis model is used to characterize the hysteresis behavior and

the properties of the model are exploited to solve the convergence problem. It is noted that

because of the multivalued input-output behavior or branching effects associated with the

nature of hysteresis, the convergence problem is challenging and difficult to solve. However,

a solution is found by restricting the system’s input-output behavior to belong on a single

branch. And by proving convergence, the number of iterations required to achieve a desired

tracking precision is quantified in terms of the model parameters. Additionally, the method
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is applied to an AFM system and experimental results show that the proposed ILC method

reduces the tracking error to the noise level of the sensor measurement.

In addition to ILC, this thesis investigates the use of integrated feedback and feed-

forward control to minimize the three effects of creep, hysteresis and vibration in piezo

positioners. The motivation to integrate feedback and feedforward control is to enhance

performance of the control system by combining the advantages of both feedback and feed-

forward techniques. For instance, high-gain feedback control is used to compensate for creep

and hysteresis effects, and it provides robustness to parameter variation [6]. On the other

hand, feedforward control is used to improve the bandwidth of the system by compensating

for vibration effect.

The work in this dissertation is important for two main reasons. First, the results

can be used in the design of critical emerging high-precision technologies for scientific

studies and commercial applications. Some examples of such technologies include scan-

ning probe microscopy-based nanotechnologies for studying cells [7] and atoms [8], and

nanolithography-based tools for semiconductor manufacturing [9, 10, 11]. Second, the re-

sults will contribute to the greater understanding of hysteretic systems and piezo position-

ers. The effect of hysteresis not only appears in piezo-based systems, but also in biology

(e.g., the Lotka-Volterra model for predator-prey interaction [12]) and economics (e.g., the

unemployment rate [13]), to name a few.

1.1 Thesis Goals

This thesis encompasses two main goals, with the second goal being the main focus of this

thesis. The first goal is compensating for the effects of creep, hysteresis and vibration effects

in piezos using an integrated feedback and feedforward controller. Specifically, feedback

control is used to account for creep and hysteresis effects. Then, inversion-based feedforward

input is integrated with the feedback controlled system to compensate for vibration effects

[14]. The advantage of using feedback is that it eliminates the need to model the complicated

creep and hysteresis behaviors. Furthermore, the feedback controller provides robustness

with respect to parameter variation, such as the effects of temperature [15]. By integrating
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inversion-based feedforward control – a technique also applicable to nonminimum phase

systems [16] – the scanning speed of piezo positioners is improved significantly.

The second goal of this thesis is solving an ILC problem for hysteretic systems; this is

the main focus of the thesis and the objective is to iteratively find feedforward input to

compensate for hysteresis to achieve nano-precision positioning. An ILC problem is solved

by proving convergence of a propose ILC algorithm for Preisach-type hysteretic systems.

Briefly, the ILC methodology is based on the observation that, for some systems, informa-

tion about its repetitive behavior can be used to improve its performance [17]. An ILC

problem is solved by characterizing the hysteresis behavior using the Preisach model. The

Preisach model captures the rate-independent hysteresis effect; the model has successfully

modeled piezoactuator systems, and its generality will allow the proposed ILC technique to

be extended to other similar hysteretic systems [18]. Based on the properties of the Preisach

hysteresis model, we show that precision-output tracking can be achieved. Additionally, we

investigate the rate of convergence for the ILC approach; the rate of convergence can be

used to quantify the performance of the proposed ILC design. Furthermore, we quantify the

tracking error with respect to the iteration number. Finally, the ILC approach was experi-

mentally evaluated on a commercial atomic force microscope system and results demonstrate

that the tracking error reduces to the noise level of the sensor measurement.

1.2 Outline

This dissertation is organized as follows. Chapter 2 provides a background on piezo-based

positioners and the principle of the piezoelectric effect, the method by which electrical

energy is transformed into mechanical energy and vice versa. Additionally, the relevant

applications of piezo-based positioners are presented, as well as a detailed discussion of the

main challenges associated with high-precision control of piezos, namely, the effects of creep,

hysteresis, and vibration.

Chapter 3 discusses the work of the first goal of the thesis, that is, compensating for

creep, hysteresis and vibration using an integrated feedback and feedforward approach. The

basis of the approach is to use feedback control to compensate for creep and hysteresis ef-
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fects and then to integrate this technique with model-based feedforward control to account

for vibration. The integrated controller eliminates the need to model the complicated creep

and hysteresis behaviors to achieve high-precision positioning. At the end of this chap-

ter, experimental results are presented that show over an order of magnitude reduction in

tracking error compared to the uncompensated case.

The second (and main) goal of this thesis, i.e., solving an ILC problem for hysteretic

systems, begins with an introduction of the Preisach hysteresis model in Chapter 4. In

this chapter, relevant properties of the model in the context of this work are discussed.

Afterwards, an ILC problem is formulated and solved in Chapter 5. Chapter 6 discusses

the implementation of the ILC approach and the experimental results. Finally, concluding

remarks and a discussion of future work follow in Chapters 7 and 8, respectively. Appen-

dices, which document circuit diagrams, miscellaneous analysis, and example C and MATLAB

programs are found at the end of this dissertation.
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Chapter 2

PIEZO-BASED NANO-POSITIONERS

This chapter provides a background on piezo-based nano-positioners. The first section

discusses the piezoelectric effect in crystals, the mechanism which transforms mechanical

energy to electrical energy, and vice versa. The second section provides an overview of the

applications for piezoelectric materials. In particular, the discussion focuses on the popular

lead-zirconate-titanate ferroelectric-ceramic material and its application in emerging scan-

ning probe microscopy-based nanotechnologies, such as atomic force microscopes. Finally,

the last section presents a detailed discussion of the main challenges that arise when piezo-

based positioners are used for high-precision positioning, namely, the loss in positioning

precision due to the effects of creep, hysteresis and vibration. It is noted that overcoming

these challenges is the focus of this thesis.

2.1 The Piezoelectric Effect

In 1784, Charles Coulomb conjectured that electricity might be produced by pressure [19];

however, no conclusive experiments were performed to validate the claim, until the year

1880, when Pierre and Jacques Curie1 discovered that certain crystals (such as quartz,

sodium chlorate, boracite, cane sugar, and Rochelle salt) when subjected to mechanical

stress produce electric charge (see timeline in Fig. 2.1). One year later, the French physicist

Lippmann predicted, based on thermodynamic analysis, the converse effect: strain as a

result of an applied voltage. That same year the Curie brothers verified Lippmann’s pre-

diction [21]. Subsequently, the discovery was named the piezoelectric effect from the Greek

word piezein, meaning to press or squeeze, and the Curie Brothers were created with the

discovery [22, 19].

1Pierre Curie was born in 1859 and died of an accident with a horse carriage in 1906. Jacques was born
in 1855 and lived till 1941. The discovery of the piezoelectric effect was made in Jacques’ laboratory [20].
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1784 1880 1881 1920

Charles Coulomb’s

Conjecture

Curie Brothers

discovered piezoelectricity

Lippmann argued the converse effect

Curie Brothers verified

Lippmann’s claim

Use of quartz 

in ultrasonics

Time

‡ American Institute of Physics

Figure 2.1: Piezoelectricity timeline [22].

Figure 2.2 shows a simplified two-dimensional model representing the piezoelectric effect

for quartz crystal. Lord Kelvin conceived the model in 1893 to explain the piezoelectric

effect [21, 19]. The piezoelectric effect is based on the unique characteristic of certain

crystalline lattices to deform under pressure, and as a result, the centers of gravity of the

positive and negative charges separate, creating a dipole moment (product of charge value

and their separation). The resulting dipole moment induces an electric charge which can

be measured across the surface of the material. Conversely, an applied voltage induces a

mechanical strain in the crystalline lattice [21]. The circles in Fig. 2.2 represent positive

(silicon) and negative ions (oxygen pair) of the unit cell of quartz, where the small solid

circle represents the center of gravity for the positively charged ions and the small open circle

represents the center of gravity for the negatively charged ions. In Fig. 2.2(a), the centers

of gravity for both positive and negative ions coincide in the equilibrium state, therefore

yielding no dipole moment. On the other hand, as the crystal is compressed by mechanical
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Figure 2.2: A two-dimensional model of a unit cell for a quartz crystal illustrating the
piezoelectric effect. This model was first conceived by Lord Kelvin in 1893 [21]. The large
solid circles represent positively charged ions and the small solid circle represents their center
of gravity. Likewise, large open circles represent negatively charged ions, and their center of
gravity is represented by the small open circle. (a) The equilibrium state where there is no
net dipole moment, i.e., the centers of gravity for positive and negative ions coincide; (b)
mechanical stress induces an electric dipole – separation of centers of gravity for positive
and negative ions; (c) and (d) an applied field produces mechanical strain. (Figure is based
on reference [21].)
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pressure, a relative displacement of the centers of gravity between the positive and negative

ions induces a dipole moment as illustrated in Fig. 2.2(b). Consequently, an electric potential

develops along the axis of polarization; the electric potential can be measured across the

surface of the crystal. Likewise, by applying a voltage across the crystal the converse effect,

mechanical strain induced by an electric potential, is achieved as illustrated in Figs. 2.2(c)

and (d). For example, Fig. 2.2(c) shows two electrodes of opposite sign, one applied to the

top and the other applied to the bottom of the unit cell. As the applied field increases,

it causes the corresponding ions to move in a favorable direction, consequently inducing

deformation in the crystal lattice and mechanical strain is achieved [23]. By reversing the

sign of the electrodes, strain in the opposite direction is achieved as depicted in Fig. 2.2(d).

Interestingly, the piezoelectric effect only occurs in crystals with no center of symmetry.

Of the 32 possible classes of crystals, 20 are piezoelectric and 12 are not; therefore, this

effect depends on the type of symmetry existing in the crystal. According to Ballato [19],

substances such as bone, wood, and ice exhibit the piezoelectric effect due to the asymmetric

nature of the molecules that make up the material.

2.1.1 Ferroelectric Materials

Piezoelectric materials, either by mechanical stress or applied voltage, produce electric

dipoles. Materials which exhibit a spontaneous polarization (i.e., electric dipoles) in the

absence of an applied stress or electric field are referred to as ferroelectrics2. All ferro-

electrics exhibit the piezoelectric effect; however, the converse is not necessarily true. For

example, quartz exhibits the piezoelectric effect, but the crystal structure does not yield a

spontaneous polarization, i.e., no net dipole moment in its equilibrium state because the

centers of gravity for the positive and negative ions coincide as shown in Fig. 2.2(a). On

the other hand, the microscopic crystallites of lead-zirconate-titanate (Pb(Ti,Zr)O3, PZT)

exhibit a spontaneous polarization due to the arrangements of atoms within the unit cell at

room temperature. But when manufactured, the random orientations of the crystallites in

this ferroelectric material produce no net effect when mechanically stressed or when voltage

2Ferroelectricity was discovered in the late 1940s [24, 25]. We note that all ferroelectrics are piezoelectric,
but not all piezoelectrics are ferroelectric.
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is applied. However, through a process called poling, the material can be made to exhibit

considerable piezoelectric effect. Basically, the poling processes forces the dipoles in the

material to align in a favorable direction. The poling process involves heating the material

near its Curie temperature, typically between 100◦ and 300◦ C, then applying a strong elec-

tric field while cooling the material. The heating process allows movement of the individual

crystallites and the application of a strong electric field causes the dipoles to align with the

field in favor of a net effect [24, 25]. As the field is maintained during the cooling process,

the majority of the dipoles maintain their alignment. After poling, the ferroelectric PZT

material exhibits considerable piezoelectric effect. Such materials are exploited in numerous

actuator and sensor applications, and PZT ceramics are the most widely used piezoelectric

materials. Additionally, PZT ceramics are manufactured into a wide variety of shapes and

sizes, from tube-shaped actuators, as shown in Fig. 2.4, to the stacked configuration. Al-

though barium titanate (BaTiO3) was the first ferroelectric material used for piezo-based

applications in the 1950s, PZT ceramic has since then replaced barium titanate because

PZT exhibits nearly twice the piezoelectric effect [22, 24, 25, 26].

2.2 Applications of Piezoelectric Materials

2.2.1 Early Uses of Piezoelectric Materials

Since the discovery of the piezoelectric effect, countless applications have emerged for ma-

terials that exhibit this behavior. Piezoelectric materials (or piezos) were first used in

underwater acoustics, as an ultrasonic submarine detector, a device developed at the end

of World War I by Langevin [19]. Back then, Langevin achieved the goal of emitting a high

frequency “chirp” underwater and measuring depth by timing the return echo.

In the 1920s, the primary use of piezoelectric crystals (namely quartz and Rochelle

salt) were for resonators (oscillators), stabilizers and filters. For instance, resonators were

common in radio broadcasting applications [21]. Additionally, composite resonators were

constructed for use as a tool to study and determine the coefficients of various solids [22].

Also, piezo resonators, such as the vibrating quartz plate, replaced the swinging pendulum

of clocks [27]. The frequency of oscillation of a quartz resonator is extremely stable against
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changes in temperature. According to Cady [22], such timepieces are more constant than

the best astronomical clocks.

A common household device that exploits the piezoelectric effect is the ignitor found in

gas stoves and pocket lighters. A high-voltage spark is generated by striking a piezoelectric

material (such as quartz) with a spring-loaded impact hammer; the spark ignites the fuel.

Such a device was first developed in Japan in the 1965; however, the idea of using high-

voltage to ignite fuel dates back to 1951 in the United States, according to reference [28].

Piezo-based ignitors are common and their use even extends to specialized high-altitude

climbing and mountaineering cooking stoves as shown in Fig. 2.3. In the figure, a spark,

which ignites the fuel, is generated by pressing a small button on the device as indicated.

The use of such ignitors eliminate the need to carry matches or pocket lighters.

Piezo ignitor

Butane Stove

Figure 2.3: A specialized cooking stove for high-altitude climbing and mountaineering that
uses a piezo-based ignitor to light the fuel. A high-voltage spark is generated by pressing a
button to trigger an impact hammer. The hammer strikes a piezoelectric material (such as
quartz) to generate a high-voltage spark, which lights the fuel. (Photo by Kam K. Leang;
climber: Chris Cass; location: The Mount Spickard and Redoubt Group, North Cascades,
WA.)



11

2.2.2 Actuators and Sensors

Piezoelectric-ceramic materials, such as PZT, with their ability to change shape under the

application of an electric field, as well as generate electric charge under applied mechanical

stress, have been exploited in various actuator and sensor technologies [29]. For instance,

piezoceramics are currently manufactured in a variety of configurations, such as the tube-

shaped geometry shown in Fig. 2.4, for use as a positioner (or actuator). In the figure, the

outer and inner electrodes are sectored into four equal and isolated quadrants. Depending

on how the voltage is applied to the electrodes, displacement in the three coordinate axes

(x, y and z) can be achieved. Typically, either an optical, strain or capacitive sensor is used

to infer the displacement of the piezo positioner [30]. By applying a voltage, the change

in volume associated with each sectored region of the tube causes it to displace, where

a lateral displacement (along the x- or y-axis) is created by an asymmetrical change in

volume between opposing sectors, for example. Also shown in the figure is a continuous

electrode at one end of the tube. When voltage is applied to this electrode, expansion or

contraction along the axial (z-axis) direction is achieved. Furthermore, when mechanical

stress is applied to the tube-shaped actuator, an electric potential can be measured across

certain electrodes; therefore, the actuator can function as a sensor.

The relationship between the applied input voltage and static (and/or dynamic) displace-

ment of the device has been extensively studied to aid in designing piezo-based systems.

For example, Locatelli [31] introduced a simple deflection equation for a tube-shaped piezo

positioner similar to the one shown in Fig. 2.4. Likewise, Chen [32, 33] derived a deflection

equation for a quarter-sectored piezo-tube actuator using the theory of elasticity. In both

cases, the deflection was found to be proportional to the applied input voltage and exper-

iments were performed to validate the claim. In their work, good agreement was found;

however, the analysis did not incorporate the effects of creep and hysteresis. (Both of these

effects are discussed in the next section.) In general, the constitutive equations relating the

induced strain (or displacement) and electric field (or applied input voltage) can easily be

obtained; but the coupling effects (piezoelectric and electrostrictive coefficients) depend on

impurities in the material, as well as many other factors [34].
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Figure 2.4: A typical tube-shaped piezo positioner consisting of a lower, continuous elec-
trode (for generating axial motion) and quarter-sectored electrodes (for generating axial and
lateral motions). Depending on how the voltage is applied to the electrodes, displacement
in the three coordinate axes (x, y and z) can be achieved. Typically, an optical sensor is
used to infer the displacement of the piezo positioner [30].



13

Piezo-based actuators can position with sub-angstrom level resolution. Because of their

ability for fine movements, piezos are used in applications such computer hard disk drives for

positioning a read/write head [35, 36, 37, 38]. Similarly, piezo positioners are exploited in

micro-machining for the positioning of cutting tools [39] and they are used in ink jet printers

[40]. Also, piezo-based positioners are used for mask alignment in imprint lithography

[41, 10]. In the field of optics, there are piezo-driven deformable mirrors [42, 43]. Piezos

are used for metrological purposes [44, 45], too, for example, to measure the line widths

of photomasks in the microelectronics industry [46] and for accurate pitch measurements

[47]. They have been used to actively suppress vibration in structures [48], as well as

in the design of micropumps for fluid microsystems [49]. Additionally, their fast response

makes them ideal for high-speed solution switching in bioengineering applications [50]. Piezo

materials are widely used in ultrasonics; for instance, Haake and Dual [51] used a thin

piezoelectric layer to generate ultrasonic standing waves to manipulate small particles by

node position control. Likewise, Kurosawa et al. [52] developed a similar ultrasonic motor.

In the biomedical field, piezo-based ultrasonics are used for hyperthermia treatment of

cancerous tumors [53, 54]. By using a bimorph design, grasping tools for minimally invasive

surgery have been designed [55, 56]. The design consists of two piezoelectric bimorph

actuators configured for holding and gripping a cutting tool. The fine movements of the

piezo tool allow for precise surgical operations which exceeds the capabilities of the human

hand. With the recent advancement in plasma-discharge jet [57] and femtosecond laser

technologies [58], piezo-based positioners, such as ultra-precision stepping positioners [59],

can be used to move these highly-precise cutting tools for nanofabrication and nanosurgery.

As previously mentioned, piezoelectric materials can be made into sensors. For exam-

ple, by exploiting the piezoelectric effect, piezo-based force and pressure sensors have been

designed [60]. Likewise, piezo-sensors have been used to measure electronic properties of

semiconductor devices via the application of stress [61]. A list of other types of piezo-based

sensors, as well as other piezo-based actuator applications, can be found in references [19]

and [62]. Now we turn our attention to emerging piezo-based scanning probe microscopy-

based nanotechnologies.
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2.2.3 Scanning Probe Microscopy-based Applications

Although piezo-based positioners are widely used in various high-precision applications, one

of their most significant contributions is in emerging scanning probe microscopy (SPM)-

based nanotechnologies. In 1982, a group of researchers at the IBM research lab exploited

the positioning capabilities of a piezoactuator for imaging atoms in a scanning tunneling

microscope (STM) [63, 64]. Since then, the piezoactuator has been the workhorse of emerg-

ing SPM-based systems for studying, manipulating and creating objects at the nanoscale

[65, 1, 66].

Figure 2.5 shows an example SPM, specifically it’s an atomic force microscope (AFM)

imaging system [67, 64, 65]. The conceptual diagram of the AFM is depicted in Fig. 2.5(a)

and the basic block diagram of the system is shown in Fig. 2.5(c). Like all SPMs, the AFM

consists of a piezo-scanning device. The function of the piezo-scanner is to position a sample

relative to a cantilever and probe tip along the x-, y-, and z-axis as shown in Fig. 2.5. The

AFM obtains an image of the sample topology by moving a probe tip over a sample surface

and simultaneously recording the surface “contours” similar to a stylus profilometer. For

instance, scanning is performed parallel to the sample surface (along the x- and y-axis), e.g.,

see the scanning trajectories shown in Fig. 2.6. As the sample is scanned relative to the

probe tip, surface contours deflect the cantilever beam perpendicular (z-axis) to the sample

surface. The deflection of the cantilever beam is measured by an optical sensor and a z-axis

feedback controller is used to maintain appropriate tip-to-sample separation for contact and

non-contact mode operations [68]. The output of the optical sensor, a signal proportional

to the height of the tip from the sample surface in the z-direction, is used to construct an

image of the topology of the sample surface [67].

One distinct advantage of the AFM compared the STM is the sample can be noncon-

ductive. Therefore, the AFM can be used to image living biological samples, such as cells

[69, 70, 71, 72, 73] and DNA [74, 75, 76]. The AFM can also be used for measuring the

properties of materials and biological samples [77, 78, 79]. Additionally, AFMs can be used

to manipulate nano-sized features and cells [80]. Similar to STMs, AFMs can be used for

nanofabrication and even designing high-density data storage devices [81, 82, 83, 84, 85].



15

PZT

Cantilever Beam 

and Probe TipSample

          z-axis 

     Feedback 

    Controller

        x, y-axis 

Scanner Control

         Optical 

Deflection Sensor

Image

x

z

y x, y

ux

z

uy

x
y

uz

Probe Tip

Piezo-tube

Actuator
x

y
z

Sample

Piezo positioner

Optical sensor

Sample

Detector

Cantilever and 

probe tip

(a)

(b)

(c)
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experimental AFM system; and (c) block diagram of the AFM system.



16

x

y

x

t

t

y

Desired scan area

2a

2a

...

...

a

-a

a

-a

Figure 2.6: A typical raster pattern used for AFM imaging [2].

2.3 Challenges in High-precision Positioning

Piezo-based positioners are the preferred workhorse of current micro- and nano-positioning

technologies because of their ability to displace with sub-nanometer level precision [29].

Additionally, they are fast (i.e., high-bandwidth response), consume very little power, pos-

sess no movable parts to cause wear and tear, and they lack backlash. In spite of their

advantages, however, the performance of piezos are limited by three major effects: creep,

hysteresis, and vibration. These three effects are discussed in the following.

2.3.1 Creep

Creep (or drift) leads to significant error when positioning over extended periods of time

(e.g., during slow-speed scanning operations) [86, 87, 88]. In mechanics, creep is a rate-

dependent deformation of the material when subjected to a constant load or stress [23].

Similarly, creep in piezoelectric materials is a rate-dependent deformation due to a constant

electric field. Creep manifests itself as the remnant polarization slowly increases after the

onset of a constant field. Figure 2.7 shows the effect of creep in the positioning of an

experimental piezoactuator. The actuator is commanded to a reference position, say 25 µm,
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Figure 2.7: The effects of creep in the output displacement measured over a period of 15
minutes.

but after a period of 15 minutes, the actuator’s position creeps to a new position of 33.41 µm.

As a result, the error due to creep is 24.44% of the total displacement range.

One method to avoid creep is to operate fast enough so that the creep effect becomes

negligible [2]; however, such effort prevents the use of piezo positioners in slow and static

applications. For example, because of drift, it is difficult to precisely fabricate nanofeatures

using AFMs when the process time-scale is on the order of minutes, e.g., see [86]. Methods

to compensate for creep have been well studied in the past and some examples include

the use of feedback control, e.g., [3, 89, 90, 4], and model-based feedforward control, e.g.,

[88, 91, 92, 2, 93, 94]. A more detailed discussion of the advantages and disadvantages of

these approaches will be presented in subsequent chapters.

2.3.2 Hysteresis

Hysteresis, a nonlinear behavior between the applied electric field and the mechanical dis-

placement of the piezoactuator [95, 96], leads to loss in positioning precision when operating

over relatively long-range displacements [3]. The term hysteresis comes from the Greek word

“to be late” or “come behind” and the term was first coined for application in 1881 by physi-

cist Ewing when he was studying magnetization. Interestingly, in the year 1881 the Curie

Brothers were credited with the discovery of the piezoelectric effect. Hysteresis is often re-

ferred to as a lag in the response. An interesting writing on the history of hysteresis can be
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gleaned from reference [13], which describes other systems which exhibit this behavior. The

mechanism responsible for hysteresis in piezoactuators is be better understood by consider-

ing the domain wall analogy for describing hysteresis in magnetic materials [96, 95, 97]. For

example, magnetic materials consist of tiny elementary magnetic dipoles. These particles

align to an applied field. The analogy to this in piezoelectric materials is the unit cell of

the crystal which exhibits an electric dipole. The term domains of polarization refers to

regions of similarly-oriented dipoles, that is, a relatively large region of connected unit cells

having similarly-oriented net polarization. The imaginary boundary which separates these

regions are referred to as domain walls. These boundaries grow or shrink depending on the

nature of the applied field. For the simple case, an isolated elementary dipole subjected

to an applied field will orient itself to the field instantaneously, and therefore displays no

hysteresis. However, hysteresis is said to arise due to “internal forces”, which causes the

dipoles to exhibit a preference for their orientation, and hence the motion of the domain

walls are retarded by such forces. These internal forces are attributed to material defects

and internal friction between dipoles and the domain walls. Even though the domain wall

analogy was conceived for magnetic materials, it can easily be extended to materials which

consist of elementary dipole-like particles, such as piezoelectric materials. Additionally, hys-

teresis “remembers” the effect of the past, which further complicates the problem in terms

of precision control (see Chapter 4).

Figures 2.8(a) and (b) shows the effect of hysteresis in an experimental piezo-based

system. In Fig. 2.8(c), the curve depicts the nonlinear relationship between the output

displacement and applied input voltage (hysteresis curve). This nonlinear effect leads to

distortion in scanning probe microscopy (SPM)-based imaging as shown in Fig. 2.8(d).

Although the actual features are oriented in a parallel fashion, hysteresis causes the features

to appear curved. More specifically, the distortion is caused by plotting the information

collected about the sample topology with respect to the desired position of the probe.

Because of hysteresis, the probe does not achieve the desired position, therefore leading to

the distorted image. Hysteresis can be avoided by operating in the linear range, i.e., over

short range displacements; however, this limits the achievable positioning range.
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Figure 2.8: The effects of hysteresis: (a) applied input versus time, (b) resulting output
displacement versus time, (c) displacement versus input curve (hysteresis curve) and (b)
distortion in AFM imaging of 16-µm pitch encoder gratings due to hysteresis effect. The
actual features are parallel.
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2.3.3 Vibration

Vibration effect limits the operating bandwidth of piezo-based positioning systems. The

effect is caused by command signals exciting the flexible modes of a system [2]. For example,

the frequency response of a piezo-based positioner typically reveals sharp resonant peaks.

These resonant peaks can easily be excited by certain command signals applied to control the

positioner. Figures 2.9(a) and (b) clearly illustrate the effect of vibration, where significant

tracking error can be observed in the displacement versus time response (Fig. 2.9(a)). When

the piezoactuator is scanned at high frequencies relative to the first resonant-vibrational

frequency of the positioner, movement-induced vibration leads to significant positioning

error [98, 99]. Such effects cause distortion in the SPM-based imaging, for example the

rippling effect in the image of Fig. 2.9(b).

Typically, scan rates (i.e., scan frequencies) are restricted to less than 1/10th to 1/100th

of the first resonant frequency, thus limiting the bandwidth of piezo-based systems because

the achievable scan rate is lower for increased resolution in positioning. However, higher

operating speed can be achieved by using stiffer piezoactuators with higher resonant fre-

quencies, for example, Ando et al. [100] used a stiff piezo with a resonant frequency of

260 kHz in an AFM to image biological macromolecules in action. Additionally, Sulchek et
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Figure 2.9: The effects of vibration (and hysteresis) scanning at 30 Hz: (a) displacement
versus time response, and (b) distorted AFM image, but actual features are parallel.
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al. [101] considered the use of high-bandwidth piezos for high-speed AFM imaging. But in

general these stiff piezos have shorter effective displacement ranges. Therefore, the use of

stiffer piezos to increase bandwidth also leads to reduction of positioning range. An alter-

native for improving the throughput of AFM-based systems is to operate multiple probes

in parallel [102, 103, 104, 105, 106]. However, movement-induced vibration caused by the

dominant resonant peak still limits the achievable scanning speed [105, 101].

In summary, creep, hysteresis and vibration effects significantly limit the performance

and application of piezo-based positioning systems [86]. This thesis addresses the issue of

improving the performance of piezo-positioners by compensating for these effects.

2.4 Summary

This chapter introduced the piezoelectric effect, the fundamental mechanism that transforms

mechanical energy to electrical energy, and vice versa. A discussion of various applications

of the piezoactuator was presented and the three adverse effects of creep, hysteresis, and

vibration were discussed in detail. We conclude that these effects lead to significant loss

in positioning precision. Furthermore, it is noted that the focus of this dissertation is

to compensate for the effects of creep, hysteresis and vibration to achieve high-precision

positioning. In the next chapter, we will discuss integrating feedback and model-based

feedforward control to compensate for creep, hysteresis and vibration effects. Afterwards,

we will focus on an iterative learning control approach to compensate for hysteresis.
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Chapter 3

DECOUPLED FEEDBACK/FEEDFORWARD COMPENSATION OF

CREEP, HYSTERESIS AND VIBRATION IN PIEZOACTUATORS

This chapter describes a decoupled feedback/feedforward control approach to compen-

sate for creep, hysteresis and vibration in piezo positioners. The objective is to achieve

high-precision positioning by decoupling the control of creep and hysteresis from the con-

trol of vibration. For instance, a high-gain feedback controller is designed to compensate

for creep and hysteresis. Compared to traditional model-based feedforward techniques,

feedback control avoids the use of complicated creep and hysteresis models. Then, a feed-

forward controller is designed and augmented to the feedback controlled system to account

for vibration.

The first section of this chapter is a review of current compensation techniques, their

advantages and disadvantages. Section 3.2 describes the experimental piezo-positioning

system and the process by which the linear vibrational dynamics model (used to find feed-

forward inputs to compensate for vibration) was obtained. In Section 3.3, the design of the

high-gain feedback controller is presented, followed by a discussion of the inversion-based

feedforward approach in Section 3.4. Finally, experimental results and a discussion are

presented in Section 3.5, and a summary follows in Section 3.6.

3.1 Introduction and Motivation

In the past, numerous studies have been done to develop techniques to compensate for the

effects of creep, hysteresis, and vibration in piezo systems. In general, these techniques can

be categorized as either feedback control or model-based feedforward control, each with its

advantages and disadvantages. For example, feedback control schemes such as proportional-

integral-derivative (PID) [3], state-feedback [39], and H∞ control [107, 4] have demonstrated
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substantial reduction of positioning errors due to creep and hysteresis. The advantages of

feedback control include: (i) the ability to handle modeling errors and (ii) it is robust with

respect to parameter variation due to aging effects [108] and environmental changes, such

as temperature changes [15]. Although feedback control reduces positioning errors, the low

gain margin in piezo positioners tend to limit the achievable performance, i.e., high feedback

gain tends to destabilize the system [3, 109]. In particular, low structural damping in piezo

positioners results in high quality factor Qf (i.e., sharp resonant peak) which gives rise to

low gain margin. In practice, a compromise is sought between performance and instability;

feedback gains (such as proportional, derivative, and integral terms) are adjusted to improve

performance without instability (e.g., in references [68, 110, 89, 89]). Moreover, feedback-

based approaches have had limited success in compensating for dynamics effects [3].

To overcome some of the performance limitations inherent in feedback control (e.g.,

limited dynamic compensation due to low gain margin), model-based feedforward input

has been used to compensate for creep and hysteresis effects [111, 112, 91, 113, 114, 94].

The feedforward input is found by carefully modeling the complicated creep and hysteresis

behaviors. Many model-based approaches have been considered, for instance, Smith et

al. [115] developed a hysteresis model based on energy methods and then used the model

for the design of an inverse compensator. Additionally, vibration compensation can be

achieved using a model-based feedforward approach [116, 99, 117], as well as accounting

for the other two effects (creep and hysteresis), e.g., in reference [2]. However, a major

disadvantage of using model-based feedforward approaches to compensate for creep and

hysteresis is that these effects are difficult to model accurately and the approach is prone

to errors. Furthermore, model-based approaches can be computationally cumbersome to

implement.

The contribution of this chapter is developing a decoupled feedback/feedforward ap-

proach to compensate for creep, hysteresis and vibration. The approach integrates the

advantages of existing feedback techniques, and improves the operating speed by the addi-

tion of feedforward input to compensate for the vibrational dynamics. Specifically, high-gain

feedback control is used to compensate for the effects of creep and hysteresis. The feedback

approach, compared to model-based feedforward techniques, avoids the need to model the
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complicated creep and hysteresis behaviors. However, because piezos tend to be flexible, i.e.,

they have sharp resonant peaks which lead to low gain margin, high-gain feedback control

is achieved by modifying the sharp resonant peak of the system with a notch filter [39, 38]

— experimental results are presented to show that this approach can lead to a substantial

increase in the measured gain margin (the gain margin was increased from −17.05 dB to

30.86 dB for our experimental system). Experimental results are also presented to show

that a high-gain feedback controller can then be designed to compensate for errors caused

by creep and hysteresis effects.

Next, the performance of the proposed feedback controller is further improved by adding

feedforward input obtained through a model-based approach [118]. Such feedback/feedforward

integration does not limit the choices of the feedback approach, that is, the model-based

feedforward technique can be used with any of the existing or emerging feedback approaches.

Moreover, the integrated approach provides robustness to parameter variation and simpli-

fies the computation of the feedforward input by avoiding the modeling of the creep and

hysteresis behaviors. The block diagram of the proposed decoupled feedback/feedforward

approach to control piezo-positioners is shown in Fig. 3.1.

Σ
+
_

xΣ

++ Piezo

System
D(s)xref

u fb

u ff

u

Feedback Controller

C(s)

(off-line)Feedforward Controller

Figure 3.1: Block diagram of control system where uff and ufb are the feedforward and
feedback inputs, respectively; u is the input to the system; C(s) is the feedback controller;
D(s) is the notch filter for improving gain margin (discussed later in Section 3.3); xref is
the reference trajectory to the feedback system; x is the actual system output.
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At the end of this chapter, the decoupled feedback/feedforward is applied to an experi-

mental piezo-positioning system. Results are presented to show that the proposed approach

leads to precision piezo-based positioning over extended periods of time (creep compensa-

tion), long ranges (hysteresis compensation) and at high scan rates (vibration compensa-

tion).

3.2 The Experimental Piezo-positioning System: Modeling the Vibrational

Dynamics

This section describes the experimental piezo-positioning system and the vibrational-dynamics

model. The experimental system studied in this article is a sectored piezoelectric-tube

(lead-zirconate-titanate, PZT) actuator used, for example, in scanning-probe-microscopy

applications [1]. The linear vibrational dynamics model of the piezo-positioning system was

obtained using a black-box identification technique, where the model was found by curve

fitting the system’s measured frequency response. The frequency response was measured

using a commercially available dynamic signal analyzer (DSA)1. A sinusoidal input voltage,

u, generated by the DSA was applied to the piezo-positioning system. The resulting lateral

displacement of the piezoactuator (in the x-direction) was measured by an optical sensor

(which has a static gain of 20 µm/V ) and fed back to the DSA to construct the frequency

response curve shown in Fig. 3.2 (solid line). The frequency response was measured over

a displacement range of ±2.00 µm, which is approximately 5% of the maximum output

range, where hysteresis is negligible. In addition, the frequency response was measured over

a relatively high frequency range (1 Hz - 2 kHz) so that the effect of creep is small.

A linear vibrational-dynamics model, represented as a transfer function in the Laplace

domain, relating the input voltage, u, to the sensor output, x̂, of the piezo-positioning

system, was curve-fitted to the measured frequency response. The model was found to be

Ĝ(s) =
x̂(s)

u(s)
= k0

∏2
m=1(s − 2πzm)

∏6
n=1(s − 2πpn)

(

V

V

)

, (3.1)

where k0 = 7.20 × 1013 is the nominal system (model) gain factor (i.e., measured over the

1Stanford Research Systems Model SR785
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Figure 3.2: Frequency response of the experimental piezoactuator system measured over
small displacements (±2 µm): measured (solid line) and linear model (dashed line).

±2.00 µm range), and the zeros (zm, for m = 1, 2) and poles (pn, for n = 1, · · · , 6) of the

model are presented in Table 3.1. The units of the transfer function Ĝ(s) can be expressed

in actual displacement units (µm/V ) by multiplying with the static sensor gain of 20 µm/V ,

i.e., G(s) = 20Ĝ(s) (µm/V ). The linear single-input single-output (SISO) model (shown as

a dashed line in Fig. 3.2) is a good fit of the measured system response up to approximately

1.5 kHz [118].

Remark 1 The sharp resonant peak at 486 Hz limits scanning to very low frequencies —

typically 10–100 times lower than the first resonant frequency during high-precision appli-

cations. Therefore, open-loop scanning is limited to less than 5 Hz for avoiding significant

vibration effect.
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Table 3.1: Zeros and poles of piezo-positioning system.

m, n Zeros, zm (Hz) Poles, pn (Hz)

1 -25 + j1059 -411

2 -25 - j1059 -5 + j486

3 — -5 - j486

4 — -70 + j1200

5 — -70 - j1200

6 — -1200

3.3 Creep and Hysteresis Compensation: High-gain Feedback Control

3.3.1 Improving the gain margin

Positioning errors in piezos can be reduced with the use of feedback control; however,

a problem with using feedback-based approaches is the low-gain margin inherent in piezo

systems. In particular, piezos ten to have low structural dampening (i.e., high quality factor

Qf or sharp resonant peak) which causes to low gain margin. For example, the experimental

piezo-positioning system has a measured gain margin of −17.05 dB (see Fig. 3.3). This

means that with a proportional feedback controller, the proportional gain is restricted to

be less than 0.14 for stability of the closed loop system; such low-gain feedback controllers

do not lead to significant improvement in the tracking response when compared to the

open-loop system.

To enable the use of high-gain feedback control, the gain margin was increased by mod-

ifying the sharp resonant peak of the open-loop system with a notch filter cascaded with

the piezo-positioning system as shown in Fig. 3.1 [39, 38]. The notch filter was chosen as:

D(s) = kD
(s − 2πz1)(s − 2πz2)

(s − 2πp1)(s − 2πp2)

(

V

V

)

, (3.2)

where kD = 2.22, z1 = −5 + j475 Hz, z2 = −5− j475 Hz, p1 = −100 Hz, and p2 = −5000

Hz. In the design of the notch filter D(s), the zeros were chosen to cancel the effects of



28

the dominant resonant peak of the piezoactuator (at 486 Hz); they were placed at 475 Hz

to achieve high gain margin for the composite system despite small changes in the location

of the resonant frequency of the open-loop system. Moreover, the poles were added to

the notch filter for attenuating high frequency noise. The notch filter was realized using

analog op-amp circuits (e.g., see [119], pp. 394-399 and Appendix B for more details) and

its measured frequency response is shown by the dotted line in Fig. 3.3, together with the

superimposed frequency response of the original system (dashed line) for comparing the

old and new gain margins. The frequency response of the composite system (solid line in

Fig. 3.3) shows that the effect of the sharp resonant peak is significantly reduced, and the

gain margin was increased to 30.86 dB.

3.3.2 High-gain Feedback Control

A proportional-plus-derivative (PD) high-gain feedback controller of the form:

C(s) = Kp + Kd

σ2s

(s + σ)2

(

V

V

)

, (3.3)

was used to compensate for the effects of creep and hysteresis, and was implemented using

analog op-amp circuits (e.g., see Fig. 3.1 and Appendix B). The two-poles in the derivative

term (at 5000 Hz, i.e., σ = 3.14 × 104 rad/s) attenuates high frequency noise that will

otherwise be amplified by differentiating the error signal. The feedback gains (Kp and Kd)

were tuned experimentally (e.g., see [120], Section 4.5); the controller gains were chosen to

be Kp = 20 and Kd = 6.56 × 10−3. With these controller gains, the settling time for the

output response (to 2% error of the final value for a step input) was reduced significantly

from 100 ms (open-loop case) to 6 ms (closed-loop case) as shown in Fig. 3.4.

3.4 Vibration Compensation: Inversion-based Feedforward Control

Tracking error due to vibration can be reduced by exploiting the known dynamics of the

piezo-positioning system. An inversion-based approach was considered for finding feedfor-

ward inputs that compensate for the vibrational dynamics during high-speed positioning

[14, 16, 121, 122, 117]. The linear vibrational dynamics model G(jω) of the piezo-positioner
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was inverted to find such feedforward inputs. Two methods of model-based dynamic com-

pensation were considered for the design of the feedforward controller: (i) the exact and

(ii) the optimal inversion method. In the first method, for a SISO system, the feedforward

input is given by

uff (jω) = G−1(jω)xd(jω), (3.4)

where G−1(jω) is the inverse of the system and xd(jω) is the desired trajectory. In Eq. (3.4),

the Laplace transform of each term has been converted into the frequency domain by re-

placing s with the complex frequency jω. If the system is nonminimum phase (i.e., G(jω)

has right-half-plane zeros), the feedforward input is noncausal, but can be computed as

described in reference [123]. This Fourier-based inversion approach (described in detail in

references [14, 16]) finds the feedforward input required to track the desired trajectory xd.

However, the input generated by exact inversion (Eq. (3.4)) can be excessively large for

tracking certain output trajectories, especially for trajectories containing frequency com-

ponents near lightly-damped system zeros. These large command signals can saturate the

system’s actuators, and in the case of piezos, they can depolarize them. Additionally, for

system models with a high degree of uncertainty over a particular frequency range, exact

inversion can result in poor performance irrespective of the type of feedback controller being

used [118]. Therefore, an optimal inversion approach [121] was also considered in the design

of feedforward input that trade-off tracking precision with other goals such as reduction of

input energy. In particular, the optimal inversion approach finds feedforward input that

minimize the cost functional given by:

J(u) =

∫ +∞

−∞

{u∗(jω)R(jω)u(jω) + [xd(jω) − x(jω)]∗

× Q(jω)[xd(jω) − x(jω)]}dω, (3.5)

where each term is expressed in the frequency domain. The superscript “∗” denotes com-

plex conjugate transpose. The cost criterion J is a design tool for trading off tracking

precision with reduction of input energy by varying the relative weights between Q and R.

These parameters represent frequency dependent real-valued weightings and should not be

simultaneously zero at any frequency. For instance, by increasing R relative to Q, input

magnitude (energy) is reduced at the cost of tracking precision. Conversely, tracking error
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is minimized by increasing Q relative to R. We point out two extreme cases for the choice

of Q and R. First, if the weight on the tracking error is zero (i.e., Q = 0) and R nonzero,

then not tracking the desired trajectory xd would be the best approach. In the second case,

if R = 0 and Q nonzero, then exact tracking is achieved, i.e., x = xd. The solution (input

that minimizes J subject to weightings Q and R) of the optimal inversion approach is given

by [121]

uopt(jω) =

[

G∗(jω)Q(jω)

R(jω) + G∗(jω)Q(jω)G(jω)

]

xd(jω),

, Gopt(jω)xd(jω). (3.6)

By applying uopt(jω), it causes the system to track of the modified desired trajectory, i.e.,

xopt(jω) = G(jω)uopt(jω),

= G(jω)Gopt(jω)xd(jω),

, Gf (jω)xd(jω). (3.7)

In Eq. (3.7), Gf (jω) is a filter that modifies the desired trajectory xd(jω) based on the

R and Q weightings. When the optimal inversion approach is integrated to a feedback

controlled system, the modified trajectory xopt is used as the reference trajectory to the

feedback system (i.e., xref = xopt in Fig. 3.1). For a discussion of trade-offs and design

related issues using this technique, for example, see references [122, 118].

3.5 Experimental Results and Discussion

In this section, experimental results are presented to demonstrate the efficacy of the de-

coupled and integrated feedback and feedforward approach. First, we demonstrate creep

and hysteresis compensation using the proposed high-gain proportional-plus-derivative feed-

back controller for scanning at slow rates (≤ 1 Hz). Then, we demonstrate that the output

tracking performance at high speeds (for the feedback system) can be significantly improved

by integrating feedforward inputs (computed using the two inversion methods presented).

Also a discussion of the results is included.
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3.5.1 High-gain Feedback Control

Creep Compensation

Experiments were performed to demonstrate creep compensation using the proposed high-

gain feedback controller. Figure 3.5 shows a step response measured over a period of 15

minutes. The sampling period during measurement was 250 ms, too slow to capture the

initial dynamic response of the system [88], but adequate for capturing the slow creep

behavior as depicted in Fig. 3.5. Two cases were compared: (i) without high-gain feedback

compensation (dashed line), and (ii) with high-gain feedback compensation (solid line).

The desired output displacement for both cases is 25.00 µm (dotted line). For the feedback

system, to achieve the desired output range, the applied reference trajectory was the desired

trajectory scaled by the measured static gain of closed-loop system, i.e., xref = 1.14xd.

This scaling by the static gain is used for all experiments that involved only feedback

control. Without feedback compensation (case (i)) the output creeps to 33.41 µm after 15

minutes, and the maximum positioning error as a percentage of the step range (25 µm) is

emax = 33.64%, defined as

emax(%) = max

∣

∣

∣

∣

xd − x

max(xd) − min(xd)

∣

∣

∣

∣

× 100%, (3.8)

where xd and x are the desired and measured displacements in µm, respectively. In contrast,

the displacement measured after 15 minutes with high-gain feedback compensation (case

(ii), solid line) is 25.37 µm, resulting in the maximum positioning error emax = 1.48%, a

reduction by over 95% compared to the open-loop case.

Hysteresis Compensation

Without compensation (open-loop), the effect of hysteresis is significant as noted by the

difference between the desired and measured response (see Fig. 3.6(a)). In Fig. 3.6(b) (hys-

teresis curve), the measured displacement x is plotted versus the desired displacement xd,

which clearly shows the distortion due to hysteresis. Without compensation the maximum

positioning error is emax = 18.08% (Eq. (3.8)). Hysteresis can also cause the output-to-

input ratio to vary with displacement range (or equivalently, with the amplitude of the
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Figure 3.5: Experimental results: creep compensation using high-gain feedback control.
Dashed line is without compensation, solid line is with compensation, and dotted line is the
desired response.

applied electric field). In terms of the model (Eq. (3.1)), this behavior can be attributed

to the open-loop gain factor k changing, or the effective sensitivity of the piezo-positioner

changing (e.g., [3, 98, 87]). More specifically, the variation in the system’s gain factor is

observed by the change in slope of each individual hysteresis loop, i.e., the slope of the line

connecting the turning points of each loop shown in Fig. 3.6(b). Graphically, this variation

is represented in Fig. 3.6(c), a plot of the gain factor k (nondimensionalized with respect

to the nominal gain factor k0 = 7.20 × 1013, Eq. (3.1)) versus the desired displacement

amplitude. In Fig. 3.6(c), k increases by as much as 37% over 25 µm displacement range.

The gain factor can also be affected by temperature [15]. We show next that high-gain feed-

back control minimizes the effects of hysteresis and the variation in the gain factor in the

closed-loop system.

Experiments were performed to demonstrate hysteresis compensation using the proposed

feedback controller and results are shown in Fig. 3.7. Figure 3.7(a) shows the time response

of the closed-loop system for scanning at 1 Hz—slow enough that dynamics effects are

negligible and fast enough that creep effects are small. The maximum scan range is 50.00

µm (i.e., [-25.00, 25.00] µm). In Fig. 3.7(b) (hysteresis curve), the measured displacement x

is plotted versus the reference (desired) displacement xref for the feedback controlled system.
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factor) in the experimental piezo-positioning system (scanning at 1 Hz): (a) displacement
versus time, (b) hysteresis curves, and (c) variation in system gain factor versus desired
displacement.
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Figure 3.7: Experimental results: hysteresis compensation using high-gain feedback control;
(a) displacement versus time of high-gain feedback system, (b) closed-loop hysteresis curves,
and (c) comparison of the variation in the open-loop and closed-loop system gain factor.

By applying high-gain feedback control, positioning error due to hysteresis was significantly

reduced, resulting in the maximum positioning error emax = 1.62%, a reduction by over 91%

compared to the uncompensated case (Figs. 3.6(a) and (b)). Also, the hysteresis reduction

lead to a smaller closed-loop gain factor variation (e.g., the closed-loop transfer function gain

factor increases by only 1.3% over 25 µm displacement range as shown in Fig. 3.7(c)) and

feedback control provides robustness to such variations. We note that further performance

improvements can be achieved provided larger feedback gains can be used; however, the

possible improvement was limited by the gain margin of the system (30.86 dB).
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High-speed Scanning Using Feedback

The performance of the feedback controller was evaluated for high-speed tracking of a si-

nusoidal reference trajectory over 50.00 µm displacement range. Figure 3.8 compares the

tracking for 1, 50, 100, and 140 Hz scan rates and Table 3.2 lists the corresponding max-

imum tracking error emax and root-mean-square error erms as a percentage of the total

displacement range (50.00 µm). For scanning at 1 Hz, the maximum error is emax = 1.59%

(Eq. 3.8) and the root-mean-square error is erms = 0.95%, defined as

erms(%) =





√

1
T

∫ T

0 e2(t)dt

max(xd) − min(xd)



 × 100%, (3.9)

where T is the scanning period (e.g., scanning at 1 Hz, T = 1 s), and e(t) = xd(t)−x(t) is the

tracking error. Overall, the experimental results show that feedback control achieves good

tracking (i.e., emax ≤ 5%) over moderate scan rates (< 50 Hz). However, at high speeds,

the effect of dynamics becomes significant, where phase lag and vibration in the output

contribute greatly to the tracking error and this leads to distortion in piezo-positioning.

Tracking error as much as 16.90% is observed for scanning at 140 Hz. At higher scan rates

(> 140 Hz in the experimental system), the unacceptably large error causes the feedback

controller to saturate (i.e., the magnitude of the output of the op-amp circuit exceeds 10 V ).

As creep and hysteresis effects are minimized, experimental results show that compensation

of vibrational dynamics at high speeds is not effective using feedback control. However, we

demonstrate next that adding feedforward inputs can significantly improve the performance

of the feedback-controlled system.

3.5.2 Integrated Feedback and Feedforward Control: Vibrational Dynamics Compensation

at High Speeds

In the first experiment, feedforward input computed off-line using the exact inversion ap-

proach (Eq. (3.4)) is integrated to the high-gain feedback system for tracking a sinusoidal

reference trajectory (see Fig. 3.1). In the second experiment, the optimal inversion method

is applied for tracking a more general (triangular) output trajectory. Both experiments
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Figure 3.8: Experimental results: Tracking of sinusoidal reference trajectory using high-gain
feedback control. Scan rates: (a) 1 Hz, (b) 50 Hz, (c) 100 Hz, and (d) 140 Hz (beyond
this frequency, PD controller output saturates). Solid line is the measured response and
dotted line is the desired trajectory.

Table 3.2: Tracking performance for sinusoidal reference trajectory using high-gain feedback
control. Values reported as percentage of total output range (50.00 µm).

Scan Rate (Hz) e       (%)
max

e       (%)
rms

1.59

5.79

11.72

16.90

0.95

3.93

7.40

10.38

1

50

100

140
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illustrate that substantial improvement in output tracking performance can be achieved by

integrating feedback and inversion-based dynamic feedforward input.

Results for the first experiment are shown in Fig. 3.9, which illustrate the tracking perfor-

mance of a sinusoidal trajectory using feedback integrated with exact inversion feedforward

control. The scan range for the experiment is 50.00 µm. Table 3.3 lists the associated

performance measures, emax and erms, for 140, 200, 300 and 450 Hz scan rates. The initial

scan rate of 140 Hz (Fig. 3.9(a)) was chosen because it was the limit of the feedback only

case (Fig. 3.8(d)). The feedforward input was computed using the exact inverse of G(jω)

(Eq. (3.4)) and augmented to the feedback input (i.e., the input to the piezo system is

u = ufb +uff , Fig. 3.1). The reference trajectory to the feedback system is the desired tra-

jectory, i.e., xref = xd. The experimental results confirm that integrating dynamic-inversion

feedforward inputs significantly reduces the maximum and root-mean-square of the track-

ing error. For example, scanning at 140 Hz using the integrated approach reduces emax

and erms by 78.52% and 82.66%, respectively, compared to using only feedback compensa-

tion for scanning at the same rate (Fig. 3.8(d) and Table 3.2). As shown, the integrated

feedback/feedforward approach achieves good tracking (i.e., emax ≤ 5%) beyond 300 Hz,

an improvement by over six-times compared to using only feedback control. Furthermore,

the bandwidth of the integrated scheme is improved to 450 Hz, i.e., the controller satu-

rates beyond this frequency. The improvement is substantial compared to the 140 Hz limit

for the feedback only case. In addition, the experimental results show that the integrated

approach maintains precision positioning over a wider range of scan rates; the high-gain

feedback control accounts for creep and hysteresis effects, while the inversion feedforward

input compensates for vibrational dynamics effects at high speeds.

Finally, in the second experiment, the optimal inversion approach was integrated with

the feedback system to demonstrate tracking of a more general (triangular) trajectory. The

results of the second experiment are shown in Fig. 3.10 and Table 3.4. We compare the

performance of the integrated feedback/feedforward approach to the proposed high-gain

feedback controller and the scan range for the experiment is 50.00 µm. For the integrated

feedback/feedforward scheme, the optimal input uopt tracks the modified desired trajectory

xopt, and thus the reference trajectory to the feedback system is xref = xopt; for the feedback
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Figure 3.9: Experimental results: tracking of sinusoidal reference trajectory using integrated
feedback and exact inversion feedforward control. Scan rates: (a) 140 Hz, (b) 200 Hz, (c)
300 Hz, and (d) 400 Hz. Solid line is measured response and dotted line is desired trajectory.

Table 3.3: Tracking performance for sinusoidal reference trajectory using integrated feed-
back and exact inversion feedforward control. Values reported as percentage of total output
range (50.00 µm).

Scan Rate (Hz) e       (%)
max

e       (%)
rms

3.63

2.72

4.88

14.81

1.80

1.39

2.32

10.15

140

200

300

450
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Figure 3.10: Experimental results: tracking of triangular reference trajectory. (a)–(d) Feed-
back control. (e)–(h) Feedback and optimal inversion feedforward control. Optimal weight-
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Table 3.4: Tracking performance for triangular reference trajectory using integrated feed-
back and optimal inversion feedforward control. Values reported as percentage of total
output range (50.00 µm).

Scan

Rate (Hz)
e       (%)
max

e       (%)
rms

4.37

9.49

12.11

18.15

3.58

6.79

9.33

13.69

50

100

140

200

e       (%)
max

e       (%)
rms

1.54

2.95

2.94

2.03

0.74

1.39

1.42

1.18

Integrated

Feedback/Feedforward
Feedback

only case, we chose xref = 1.14xopt (scaled by the DC gain of the closed-loop system). The

weightings of the optimal inversion controller were chosen to give up tracking of all frequency

components beyond 450 Hz (to avoid saturation). In particular, the weightings are Q = 1

and R = 0 for ω ≤ 450 Hz, and Q = 0 and R = 1 for ω > 450 Hz.

The integrated feedback and optimal inversion feedforward approach substantially re-

duces positioning errors compared to just using feedback control for tracking a triangular

trajectory as illustrated in Fig. 3.10 and Table 3.4. Good tracking (i.e., emax ≤ 5%) is

achieved even at the 200 Hz scan rate. Furthermore, the maximum and root-mean-square

of the tracking error were reduced by over 88% and 91% at this scan rate compared to using

only feedback control.

In summary, the experimental results show that the proposed decoupled feedback/ feed-

forward approach significantly improves tracking performance of an experimental piezo-

positioning system. In particular, by achieving relatively high gain (by cascading a notch

filter to improve the gain margin of the system), a feedback controller can be designed to

account for creep and hysteresis effects without modeling such complicated behaviors. Ad-

ditionally, the feedback controller is robust to parameter variation (e.g., such as change in

the system’s gain factor). Although feedback control can account for creep and hysteresis

effects, it provides limited dynamic compensation at high scan rates. However, the per-
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formance of such systems can be improved substantially by integrating feedforward inputs.

Specifically, the inversion-based approach significantly improves the positioning precision

at high scan rates as well as increase the system’s bandwidth. Therefore, the integrated

approach provides a means of achieving precise positioning over a wider range of scan rates

and displacements.

3.6 Summary

We proposed a decoupled feedback/feedforward approach to compensate for the effects of

creep, hysteresis and vibration for piezoactuators. By achieving relatively high gain (by cas-

cading a notch filter to improve the gain margin of the system), a feedback controller can

be designed to account for creep and hysteresis effects without modeling such complicated

behaviors. Vibration compensation was achieved by integrating feedforward inputs com-

puted using the inversion-based approach. Experimental results demonstrate a significant

performance increase for an experimental piezo-positioning system over extended periods

of time, long ranges and high scan rates. In the remaining chapters of this dissertation, we

will apply iterative learning control to further improve the tracking precision. In particular,

the method will be developed for hysteretic systems.
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Chapter 4

THE PREISACH HYSTERESIS MODEL

This chapter focuses on the Presiach hysteresis model. The properties of the model

will be used in the following chapter to develop and analyze an iterative learning control

scheme to compensate for hysteresis. The first section of this chapter describes the modeling

of piezo-based positioning systems as a cascade two sub-systems: (i) a rate-independent

nonlinear element that represents the hysteresis behavior and (ii) a linear time-invariant

dynamic block that captures the creep and vibration effects. Then, subsequent sections

describe in detail the Preisach hysteresis model and its properties in the context of the

study in this dissertation.

4.1 Modeling Piezo-based Positioners

Piezo dynamics consists of hysteresis, creep and vibration effects [2]. To accurately model

a piezo-based system requires consideration of all three effects. To this end, we consider

a widely used model structure which involves cascading a nonlinear element (NLE), rep-

resenting the hysteresis behavior, with a linear time-invariant (LTI) dynamic block, which

captures the creep and vibration effects, as shown in Fig. 4.1 [124, 2, 125]. Such a model

structure, where a nonlinear element precedes (and is in series with) a LTI system, is known

as a Hammerstein-based model. Hammerstein-based dynamic models have been used to

characterize nonlinear chemical processes [126] and hysteresis behavior [124], for example.

The structure of the model is justified by observing that the physical mechanisms of hys-

teresis behavior in piezos is attributed to domain wall interaction, a phenomenon that leads

to nonlinear electromechanical coupling [127, 128, 129, 97]. For instance, the induced strain

in a piezoactuator is a nonlinear function of the applied electric field (denoted by u); and

as a result, the effect of hysteresis can be regarded as an input nonlinearity. On the other

hand, it has been shown that the relationship between the induced strain and mechanical
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Piezo Positioner

u
v

y

Figure 4.1: The model of piezoelectric positioners. The applied electric field is denoted by
u, which is mapped to v by a rate-independent nonlinear element (NLE), and the signal v
becomes the input to the linear time-invariant dynamic block (LTI), which has output y.

displacement behaves linearly [130, 131]. Therefore, the input-to-output behavior of piezo-

based systems can be modeled by combining a rate-independent nonlinear element in series

with a linear time-invariant dynamic block as shown in Fig. 4.1. In this representation, the

rate-independent nonlinear element maps the input u to v and then v becomes the input to

the LTI block with output y (see Fig. 4.1). More specifically, the complete model is given

by

y(t) = G(v(t)); v(t) = H[u](t), (4.1)

where H represents the rate-independent1 hysteresis behavior, G is a linear mapping from

v to y and u is the input to the system. The above representation has been exploited in the

past for position control [2, 125]. In the next section, we describe the Preisach model, the

rate-independent nonlinear element H, in more detail.

We note that for the model depicted in Fig. 4.1, given a desired trajectory yd, the

system inversion technique [14, 16] can be used to find input to achieve yd. Therefore, in

the remainder of this dissertation, we focus on the hysteresis behavior H and consider the

objective of iteratively finding a feedforward input to track a desired trajectory vd. At

the end of this dissertation, we discuss future work (see Chapter 8) to extend the iterative

learning control method to include the LTI dynamics.

1A formal definition of rate independence is discussed in reference [18], Section 2.2.
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4.2 The Preisach Hysteresis Model and the Preisach Plane

In 1935, Ferenc Preisach2, through his studies of magnetic materials, developed an interest-

ing model to describe hysteresis [133]. Although it was originally developed to model the hys-

teresis in magnetic materials, the Preisach model has been successfully applied to model the

hysteresis behavior in piezoelectric materials (e.g., see references [134, 135, 113, 136, 137]),

as well as many other hysteretic systems such as shape memory alloys [138, 139] and magne-

tostrictive actuators [140]. Additionally, the unique structure of Preisach’s model motivated

further abstraction of the model to more general hysteresis operators by Krasnosel’skii and

Pokrovskii [141], the properties of which have been studied extensively in the past, for ex-

ample, in the collection edited by Visintin [142] and in the work of Brokate and Sprekels [18].

However, one drawback of this generalization is that the parameters of the model are dif-

ficult to associate with physical systems. On the other hand, the generality of the model

extends its usefulness to a broad spectrum of systems. Therefore, the results of this thesis

will be valid for systems with hysteresis behavior that fit the Preisach model description.

In the Preisach model, the individual dipoles in the magnetic (or piezoelectric) material

are modeled by elementary relays as shown in Fig. 4.2(a). Each relay can assume a value of

+1 or −1 depending on the current and future values of the input u (e.g., applied voltage).

More formally, the relay operator R : R → {−1, +1} is defined as [143]:

Rα,β [u](t) =



















+1 u(t) > α,

−1 u(t) < β,

unchanged β ≤ u(t) ≤ α,

(4.2)

where the input u ∈ R. For each relay R, there is a unique pair of “up” and “down”

switching values (α, β) associated with it, such that α ≥ β. In Fig. 4.2(a), the horizontal

segment is reversible; however, the vertical segments can only be traversed in one direction.

Relays with α = β are called degenerate, and the associated vertical segments can be

traversed in both directions. The elementary relay operator is considered to exhibit local

2Very little is known about Ferenc Preisach. In fact, most do not know his first name. In honor of
his contributions in the area of hysteresis modeling, Vajda and Torre published a short history of Ferenc
Preisach in the March 1995 issue of the IEEE Transactions on Magnetics [132].
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Figure 4.2: (a) The elementary relay (Preisach hysteron) with switching values α ≥ β,
and (b) the model of hysteresis in a piezo positioner, where the output v(t) is the sum of
weighted hysterons.

memory [143]; that is, the output of the relay for t ≥ t0 can be uniquely determined by

knowing the output v(t) at the current time t0 and the input u(t) for t ≥ t0. In piezoelectric

materials, the relays Rα,β can represent individual electric dipoles and the two states, ±1,

model the possible orientation of the dipole, for example. In addition, the behavior of these

relays, and hence the Preisach model, is only defined for continuous inputs u.

By modeling the behavior of individual dipoles as elementary relays, Ferenc Preisach

then assumed that the output v is the weighted sum of an infinite number of relays as

illustrated in Fig. 4.2(b). Thus, the output v is expressed as:

v(t) = H[u](t) =

∫∫

α≥β

µ(α, β)Rα,β [u](t)dαdβ, (4.3)

where µ : R × R → R is the weighting associated with each relay Rα,β , otherwise known as

the Preisach weighting function [143, 18].

The collection of all possible “up” and “down” switching pairs (α, β) make up the

Preisach plane P, defined as

P , {(α, β) ∈ R × R|α ≥ β}. (4.4)
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However, the boundary of the Preisach plane for physical systems is limited by the restric-

tions on the input u, for instance u ∈ [u, ū]. It is quite possible that relays outside of this

boundary may never be exercised. For hysteresis with closed major loops, the behavior is

bounded by [u, ū]. The hysteresis behavior outside of [u, ū] are fully reversible, therefore only

degenerate relays can contribute to the output. Taking this restriction into consideration,

and for convenience, the Presiach plane P is redefined as

P , {(α, β)|α ≥ β; u ≤ α; β ≤ ū}. (4.5)

The behavior of the model in this restricted plane produces closed major hysteresis loops.

In the remaining when points (α, β) are considered to be outside of P, they will be stated

explicitly. Furthermore, we emphasize that every point (α, β) in the Preisach plane P is

associated with a unique relay Rα,β . It will be shown in the following that the Preisach

plane provides a convenient way of keeping track of the state of relays Rα,β as the input u

varies.

4.2.1 The Geometric Interpretation of the Presiach Plane

The geometric interpretation of the Preisach model provides interesting insight. For exam-

ple, to illustrate this consider the right triangle P shown in Fig. 4.3(a). This triangular

region is the restricted Preisach plane P. The hypotenuse of the triangle is the line α = β

and the vertex of the right angle is the point (u, ū). As previously stated, the values u and

ū relate to the limits of the input u, that is, u ∈ [u, ū]. Now, assume that the input u(t) at

some time t0 is below u. Then, all relays Rα,β with α and β values below u are in the −1

state. This is depicted in Fig. 4.3(a) by the open right triangle. In this situation, the system

is said to be in the state of “negative saturation”, i.e., every relay in the right triangular

region P is in the “down” or −1 state.

Next, assume that the input u(t) is monotonically increased to a value u1 at time t1.

As the input increases, relays with α value below the current input value u(t) are switched

“up” such that their outputs are +1. Geometrically, the relays in the +1 state lie below

the horizontal line depicted in Fig. 4.3(b), i.e., the shaded region represents the relays that
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Figure 4.3: The Preisach plane and its behavior with respect to the input u.

have switched “up”. Then, the right triangle region P is subdivided into two sets:

P+(t) , {(α, β) ∈ P : output Rα,β [u](t) = +1}, (4.6)

P−(t) , {(α, β) ∈ P : output Rα,β [u](t) = −1}, (4.7)

with P = P+(t) ∪ P−(t). These two sets are connected. Furthermore, we note that as the

input increases, the horizontal line α = u(t) sweeps upward, switching relays with α value

less than the current input u(t) to the +1 state.

Now, we assume that the input u(t) is monotonically decreased to some value u2 at time

t2. As the input decreases, relays with β value greater than the current input value u(t)

are switched “down” such that their outputs are −1. Geometrically, the relays that are in

the −1 state lie to the right of the vertical line shown in Fig. 4.3(c). It is easy to see that

the Preisach plane at time t is subdivided into the two sets: P+(t) and P−(t), as described

above. In addition, as the input decreases, the vertical line shown in Fig. 4.3(c) sweeps

vertically from right to left.



49

The interface that separates the two sets P+(t) and P−(t) is denoted by L(t). In fact, as

the input increases and decreases monotonically, additional horizontal and vertical links are

added to the interface L(t) as shown in Fig. 4.3(d). Therefore, at any instant of time t, the

Preisach plane P is subdivided into two sets: P+(t) and P−(t), such that P = P+(t)∪P−(t)

and the interface L(t) separates the two sets. In his work, Mayergoyz [143] emphasized that

the links of L(t) may not necessarily be segments of lines parallel to the coordinate axes.

In addition, different weighting functions µ+(α, β) and µ−(α, β) can be defined on the

positive and negative sets, respectively. However, in the context of this work, we adopt

the traditional Preisach model, i.e., the links of L(t) are segments of lines parallel to the

coordinate axes and a single weighting function µ(α, β) is assumed over the Presiach plane

P. The properties of µ(α, β) is addressed in subsequent sections.

From the geometric perspective of the Preisach model, we conclude that the output v(t)

can be expressed in terms of the two sets P+(t) and P−(t) as,

v(t) =

∫∫

P+(t)

µ(α, β)dαdβ −
∫∫

P−(t)

µ(α, β)dαdβ. (4.8)

Furthermore, considering that P = P+(t) ∪ P−(t), we obtain

v(t) =

∫∫

P+(t)

µ(α, β)dαdβ −
∫∫

P−(t)

µ(α, β)dαdβ,

=

∫∫

P+(t)

µ(α, β)dαdβ −







∫∫

P

µ(α, β)dαdβ −
∫∫

P+(t)

µ(α, β)dαdβ






,

v(t) = 2

∫∫

P+(t)

µ(α, β)dαdβ −
∫∫

P

µ(α, β)dαdβ. (4.9)

Now we are ready to state some of the properties of the Preisach model.

4.3 Properties of the Preisach Model

The following properties of the Preisach model will be used in the remainder of this disser-

tation. We begin with some geometric properties and point out that a detailed discussion

of the Preisach model can be found in references [143, 18].
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4.3.1 The Wiping-out Property

Mayergoyz [143] presented a representation theorem which states that the wiping-out prop-

erty and the congruency property constitute the necessary and sufficient conditions for a

hysteresis nonlinearity to be represented by the Preisach model. Furthermore, the model

is defined over the set of continuous piecewise monotonic inputs. In the following, the

wiping-out and the congruency properties are discussed.

The wiping-out property simply states how the interface L(t) evolves as the input u is

varied. As previously mentioned, the interface L(t) stores the effect of past input history

(extremum), i.e., the Preisach model has the ability of memory storage. To make this more

precise, consider the following definition:

Definition 1 (Global Maximum and Minimum) Consider an input u(t) defined over

the time interval t0 ≤ t ≤ t′. Assume that at the initial time t0 the input value u(t0) was

below u (e.g., input that achieves full negative saturation). Then, the alternating series of

global maximum Mj and global minimum mj points are defined as:

Mj = max
[t−j−1

,t′]
u(t); u(t+j ) = Mj ,

mj = min
[t+j ,t′]

u(t); u(t−j ) = mj ,

for j = 1, 2, 3, · · · , q, where q ∈ N, and N is the set of all positive integers.

To better illustrate this definition, consider the input versus time curve shown in Fig. 4.4.

The global maximum Mj and global minimum mj , as defined above, are indicated on the

curve in Fig. 4.4.

Property 1 (The Wiping-Out Property) The Preisach model only accumulates the al-

ternating series of global maximum Mj and global minimum mj established by Definition 1.

Intermediate input extrema are erased.

The wiping-out property is illustrated in Fig. 4.5. The figure shows how intermediate

input extrema are erased as the input varies and how the interface L(t) captures the global

maximum and minimum points.
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Figure 4.4: Input u(t) and the global maximum and global minimum points.

The coordinates of the vertices for the staircase interface L(t) (as shown in Fig. 4.3(d)

and Fig. 4.5) are given by

a0 = (β0, M1),

Ai = (mi, Mi) for i = 1, 2, · · · , q,

ai = (mi, Mi+1) for i = 1, 2, · · · , r.

4.3.2 The Congruency Property

The congruency property simply states that the output variation for two inputs u1(t) and

u2(t) that vary between two consecutive extremum values [ua, ub] ⊂ [u, ū] are the same. The

following proposition makes this property more clear.

Proposition 1 (Output Variation) A monotonic change in input which causes the bound-

ary to sweep out an area Ω from t1 to time t2 results in an output variation [139]

v(t2) − v(t1) = 2sgn[u(t2) − u(t1)]

∫∫

Ω

µ(α, β)dαdβ. (4.10)
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Proof

Consider the case for monotonically increasing u(t) from time t1 to t2. As the input u(t)

increases from time t1 to t2, the area Ω is swept out (see Fig. 4.6). Then, the output at t1

and t2 can be written as (from Eq. (4.9))

v(t1) = 2

∫∫

P+(t1)

µ(α, β)dαdβ −
∫∫

P

µ(α, β)dαdβ, (4.11)

v(t2) = 2

∫∫

P+(t2)

µ(α, β)dαdβ −
∫∫

P

µ(α, β)dαdβ. (4.12)

Subtracting v(t1) from v(t2), we obtain

v(t2) − v(t1) = 2

∫∫

P+(t2)

µ(α, β)dαdβ − 2

∫∫

P+(t1)

µ(α, β)dαdβ. (4.13)

Now, considering that P+(t2) = P+(t1) ∪ Ω, we conclude

v(t2) − v(t1) = 2

∫∫

Ω

µ(α, β)dαdβ. (4.14)

Likewise, for monotonically decreasing u(t) from t1 to t2, we have

v(t2) − v(t1) = −2

∫∫

Ω

µ(α, β)dαdβ. (4.15)

The congruency property is explained by making use of Proposition 1. Consider two

inputs u1(t) and u2(t), such that at time t0 both inputs have achieved the same value, i.e.,

u1(t0) = u2(t0) = ua. Both inputs prior to time t0 can have different past input histories.

Suppose after time t0 the inputs u1(t) and u2(t) experience a monotonic increase to ub and

then decrease back down to ua. The resulting change for both inputs is ∆u1 = ∆u2 = ∆u.

As a result of this change, the area Ω is swept out in the Preisach plane. From Proposition 1,

we conclude that

∆v1 = 2

∫∫

Ω

µ(α, β)dαdβ, (4.16)

∆v2 = 2

∫∫

Ω

µ(α, β)dαdβ, (4.17)
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Figure 4.6: The congruency property. The output variation of minor hysteresis loops are
the same for two consecutive inputs that vary between [ua, ub].

which implies that ∆v1 = ∆v2 and this is illustrated in Fig. 4.6. In the figure, the output

variation associated with inputs u1 and u2 are the same because the same area Ω is swept.

The congruency property is stated precisely as follows:

Property 2 (The Congruency Property) All minor hysteresis loops corresponding to

back-and-forth variations of inputs between the same two consecutive extremum values [ua, ub] ∈
[u, ū] are congruent.
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4.3.3 Nonlocal Memory

It is interesting to note that the elementary relay R operator exhibits local memory3; how-

ever, the Preisach model exhibits nonlocal memory, that is, the current output at time t0

along with the current and future input u(t) for t ≥ t0 does not provide enough information

to determine uniquely the output v(t) for t > t0. The reason is the Preisach model captures

the effect of past input history and this is reflected in the partitioning of the plane by the

interface L(t). It is quite possible that two outputs coincide at time t0; however, the same

input variation u(t) for t ≥ t0 can produce completely different outputs v1(t) and v2(t) for

t > t0. This is because at time t0, the interfaces associated with the two outputs, L1(t)

and L2(t), are completely different. For this reason, the Preisach model exhibits nonlocal

memory as illustrated in Fig. 4.7. In the figure, the output (point Q) for t > t0 can evolve

in an infinite number of paths, depending on the partition of the Preisach plane at time

t0. Therefore, knowing the output at time t0 does not provide enough information about

how the output will change for t > t0. On the other hand, the output can be determined

uniquely by knowing the partitioning of the Preisach plane at time t0, i.e., knowing the

region P+(t0) or equivalently, the memory curve L(t0).

α

β

v

u
Q

(a) (b)

Figure 4.7: Nonlocal memory effect.

3Recall that a relay exhibits local memory when the output of the relay for t ≥ t0 can be uniquely
determined by knowing the output v(t) at the current time t0 and the input u(t) for t ≥ t0.
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4.3.4 The Effects of Looping (Branching) and Loss of Directionality

Another behavior associated with Preisach-type hysteresis is shown in Fig. 4.8. In this

figure, suppose the inputs u1 and u2 were increased monotonically such that u1 > u2 at

time t0. By the partitioning of the Preisach plane, it is clear that at time t0, v1 > v2 as shown

in Fig. 4.8(a). Next suppose that at time t1, the input u1 is decreased monotonically until

time t2. The decrease in input causes the vertical line associated with u1 to swept from right

to left as shown in Fig. 4.8(b). At time t2, we have that u1 > u2 and v1 > v2. Now suppose

the input u1 continues to decrease monotonically until time t3 such that u1 < u2 and for this

situation, we still have that v1 > v2 (Fig. 4.8(c)). Essentially, this behavior is interpreted

as follows: the sign of the error of the output (i.e., v2 − v1) cannot be used to infer the

sign of the difference in the input (i.e., u2 − u1). This behavior implies a loss of direction

information between the input and output. For example, at some time t, knowledge of

the sign of the tracking error provides no useful information about the direction the input

should be applied to reduce the tracking error. This notion is schematically depicted in

Fig. 4.8(d) which shows a typical hysteresis curve (plot of v versus u). In the figure, for

a given value vd, there exists an uncountable set of possible desired input values ud that

achieves vd. And depending on which branch is associated with the current input value,

the direction for which the input needs to change can either be positive or negative. For

example, if point Q was the output at some time t, then it is unclear if the input u should be

increased or decreased to minimize the error between Q and vd, unless, however, we know

which hysteresis branch point Q belongs. As a result, the looping or branching effects can

pose a problem for showing convergence of iteration-based control schemes because of the

lack of direction information, which is essential to the convergence of such schemes.

4.3.5 Preisach Model Assumptions and Relevant Definitions

We will consider the following additional properties, assumptions and definitions related to

the Preisach hysteresis model. An extensive study of other mathematical properties of the

Preisach model can be found in [144], for example.
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Definition 2 (The Initial Memory Curve) We let L0 denote the initial state of the

Presiach operator, or otherwise known as the initial memory curve, i.e., L0 , L(t0).

Assumption 1 (Preisach Model Assumptions) For the Preisach model, we assume:

a) The applied input u ∈ [u, ū].

b) The Preisach weighting function is bounded by 0 ≤ µ(α, β) ≤ µmax < ∞ and piecewise

continuous ∀(α, β) ∈ P, where P is given by Eq. (4.5) and

µmax , max
∀α,β∈P

µ(α, β). (4.18)

c) There exists a ξ > 0 such that µ(α, β) ≥ µ > 0, ∀(α, β) ∈ Ωξ, where Ωξ is the region

depicted in Fig. 4.9(a)4 and

µ = min
∀(α,β)∈Ωξ

µ(α, β). (4.19)

The region Ωξ is enclosed between the lines α = β and α = β + ξ.

Let Assumption 1 hold and L0 be the initial memory curve as defined in Definition 2,

then:

Property 3 (Continuity) H : C0(I) → C0(I) is continuous (in the sup norm) (e.g., see

reference [144], Section 3).

Property 4 (Piecewise Monotonicity) The output v ∈ C0
m(I) is strictly increasing (re-

spectively, decreasing) if and only if u ∈ C0
m(I) is strictly increasing (respectively, decreasing)

(e.g., see reference [144], Section 5).

Definition 3 (Branch) Let L0 be an initial memory curve and u ∈ C0
m+(I) (respectively,

u ∈ C0
m−(I)), then we say the pair (u,H[u]) belongs to the branch B↑[·, L0] (respectively,

B↓[·, L0]). By the Preisach Property 4 a branch is an increasing function of u (Exam-

ples of three different branches with initial memory curves L0, L̃0, and L∗
0 are shown in

Fig. 4.9(b).).

4This assumption ensures that a nonzero change in the input will result in a nonzero change in the output.
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Figure 4.9: (a) Geometric representation of Assumption 1(c). (b) Branches and turn-around
point. (b) Location of a turn-around point in the Preisach plane.

Definition 4 (Turn-around Point) We call a turn-around point the location in the u-v

plane where the input u changes from increasing to decreasing in time or vice versa, e.g.,

see Figs. 4.9(b) and (c).

4.4 Summary

A brief introduction to the Preisach model for hysteresis was presented in this chapter. Some

of the properties of the model were discussed in the context of the work in this dissertation.

In the following chapters, the Preisach model will be used in the formulation and analysis

of a proposed iterative learning control approach to compensate for hysteresis in piezos.
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Chapter 5

ITERATIVE LEARNING CONTROL OF HYSTERESIS: THEORY

In Chapter 3, feedback and feedforward control were used to precisely control an exper-

imental piezo positioner; feedback control was decoupled from feedforward control, where

feedback control compensated for creep and hysteresis effects, and feedforward input ac-

counted for movement-induced vibration. The results in Chapter 3 showed that the track-

ing error can be reduced by over an order of magnitude compared to the uncompensated

case. Although the amount of improvement is a significant contribution, for applications

requiring high-precision positioning over large range, say 50 µm, the residual error can be as

large as a few microns. Such large positioning error is unacceptable in applications such as

nanofabrication where the probe tip is required to maintain a precision of less than 100 nm.

Therefore, the need to achieve high-precision control of emerging SPM-based nanotechnolo-

gies motivates the work in this chapter.

In this chapter, a method to iteratively find feedforward input to compensate for hysteresis-

caused positioning error in piezo positioners is developed. In particular, iterative learning

control (ILC) is used to achieve high-precision positioning and a proof of convergence for a

proposed ILC algorithm is presented. In the analysis, the Preisach hysteresis model is used

to characterize the nonlinear behavior of a piezo positioner. Using this model, we quantify

the number of iterations required to achieve a prescribed tracking precision. Afterwards in

Chapter 6, the method is applied to an experimental atomic force microscope system to

demonstrate its efficacy, and results show that the positioning error can be reduced to the

noise level of the sensor measurement. Contrast to the feedback and feedforward approach

presented in Chapter 3, the ILC method further reduces the error due to hysteresis, and

we note that higher precision can be achieve with the use of better sensors. Additionally,

we note that the ILC approach can be integrated with existing feedback and feedforward

schemes [3, 4, 5, 145] to further improve performance.
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5.1 Introduction and Motivation

As a nanomanufacturing tool, piezo-based positioners, with their ultra-fine positioning capa-

bility, have the potential of, for example, down scaling current semiconductor devices toward

the atomic regime [146]. For instance, quantum point contact (QPC) nanoelectronic de-

vices have been fabricated using scanning probe microscopy (SPM)-based techniques [147].

The production and study of such nanoelectronic devices are needed for creating smaller,

faster and cheaper semiconductor electronics to meet the continued growth of computing

power [148]. Interestingly, research has shown that a QPC’s conductance threshold voltage,

a critical electrical characteristic, is directly related to its fabricated dimensions [147]. As a

result, precise lateral (x- and y-axis) control of the SPM-based fabrication tool is needed to

create high-quality nanoelectronic devices. Likewise, long-range nano-precision control of

the SPM-based tool is required to enable large-scale production. Unfortunately, hysteresis

effect in piezos leads to significant loss in positioning precision and it drastically affects

the quality of the nanomanufacturing process, i.e., large hysteresis-caused positioning error

leads to part distortion, consequently affecting a part’s performance [147]. Therefore, the

critical need to achieve long-range nano-precision positioning motivates the effort to correct

for positioning errors due to hysteresis.

Additionally, high-precision positioning is needed for emerging AFM-based high-density

data storage devices [149]. The AFM-based approach was developed to address the limi-

tations of magnetic-based storage devices. For example, consider the current areal density

of 100 Gb/in2 in magnetic media-based computer hard drives. The 100 Gb/in2 translates

to roughly 12.5 GB/in2 areal density. Figure 5.1(a) shows the top view of a standard hard

drive platter where the data is encoded on concentric rings on a magnetic platter [150, 151].

For the density of 100 Gb/in2, ideally, a data bit occupies an area roughly 80 nm × 80 nm

square. However, the industry standard calls for a bit aspect ratio of 4:1 [152] as shown in

Fig. 5.1(b); therefore, the 80 nm× 80 nm square converts to a 40 nm× 160 nm rectangular

area [151]. If the bits are packed closely together on each track, then their arrangement

relative to the disk motion is illustrated in Fig. 5.1(c), where the track pitch width (center-

to-center track distance) is 160 nm. As a rule of thumb (by industry standards [151]), the



62

maximum positioning error that the read/write head is allowed is 10% of the track width,

which means the error in positioning the read/write head cannot deviate more than 16 nm.

If we consider the standard stroke length for a piezo-based read/write positioner is 1 µm,

then the 16 nm error implies that the maximum error in percent of the total stroke length

is 1.6%. So, the performance of a standard hard drive these days meets these specifications

to function properly. Such precision in positioning is reasonable since the performance of

current feedback/feedforward control schemes can reduce the error to a few percent of the

displacement range [3, 4, 5, 145].

Currently, however, the industry is now trying to achieve the density of 1 Tb/in2

(125 GB/in2) [153]. But due to the limitations in reducing the data bit in magnetic-data

storage devices, the industry is looking at other alternatives to increase the areal density.

One proposed approach is to use the AFM to physically punch holes on the surface of a

material and each hole will represent a data bit, e.g., see Fig. 5.2(a). At the present time,

research demonstrates that holes on the order of 10 nm and even smaller can be made using

an AFM [83, 149]. Such holes are substantially smaller than the achievable bit size in mag-

netic media. Therefore, a 1 Tb/in2 areal density translates to a bit-area of 25 nm× 25 nm

square (Fig. 5.2(b)). Since holes punched by the AFM are circular in geometry, there is no

need for a bit aspect ratio of 4:1 and the data bits will occupy a square area as illustrated

in Fig. 5.2(b). Furthermore, if we assume that holes can be reliably produced on the order

of 10 − 20 nm in diameter, then data bits can be arranged as shown in Fig. 5.2(c). On the

conservative side, if we assume that the holes are 20 nm in diameter and based on the pre-

cision required by current industry standards (error of 10% of the track width), the probe

tip can only deviate from the center of the track position by 2.5 nm before the hole starts to

encroach on the space of its neighbor. Then to achieve the 1 Tb/in2 goal, a required 2.5 nm

precision is needed for positioning the read/write. Such a precision is significantly smaller

than 16 nm from the previous example. Additionally, if we use the same piezo positioner

with a stroke length of 1 um, we find that the maximum error must be less than 0.25%.

To this end, nano-precision positioning is important for advanced high-density data storage

devices.

We note that in SPM-based applications, as much as 10 − 15% tracking error occurs
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when piezos are operated over long range [4, 5]. Compensating for hysteresis-caused po-

sitioning error is challenging and a wide variety of techniques have been proposed. For

example, by using charge control (rather than voltage control), the effect of hysteresis can

be minimized, but at the cost of reducing the effective displacement range of the actuator

[154]. Additionally, this technique requires specially designed circuits. Also, modeling the

highly nonlinear hysteresis behavior has been studied extensively, e.g., [134]. A model is

used to find input to compensate for hysteresis, e.g., see [2]. However, the drawbacks are:

(i) the approach is computationally cumbersome and (ii) it is prone to errors. On the other

hand, standard feedback-based approaches [3], as well as more advanced schemes [4], have

been investigated to improve positioning precision. The feedback-based approach is robust

to model uncertainty and parameter variation, but closing the loop may be challenging for

systems that have low gain margin; moreover, the performance of feedback-based systems

is limited by the achievable gain margin [155, 145] (see Chapter 3). Notwithstanding, both

feedback and model-based feedforward techniques have been relatively successful; they can

reduce the positioning error to a few percent (typically between 2-5%) of the displacement

range [3, 4, 5]. But even at this level of precision, unacceptably large error exists. For

example, 2% tracking error over a 50µm displacement range leaves 1µm of error, which

is certainly larger than the nano-precision (< 100nm) typically required in atomic force

microscopy (AFM)-based fabrication of ultra-small semiconductor devices [147]. Alterna-

tively, this dissertation studies ILC to compensate for hysteresis and experimental results

are presented to demonstrate precision positioning beyond current feedback and feedforward

techniques, e.g., the tracking error reduces to the noise level of the sensor measurement.

Additionally, we point out that ILC can be integrated with existing feedback/feedforward

schemes (e.g., the approach mentioned in Chapter 3 and in references [156, 145]) to further

improve precision.

The ILC framework is based on the observation that if the system’s operating conditions

remain the same during each operation, then the errors in the output response repeat during

each operation. The objective is to make use of the information from previous operating

trials to improve the response in the next iteration; and as a result, the performance of

a system can be improved through repetition. A block diagram of the control scheme is
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shown in Fig. 5.3, where vd is the desired output, and uk and vk are the input and output

at the kth trial, respectively. Therefore, we would like to find an input for the next step,

i.e., uk+1, such that the performance of the system is better than the previous step.

The ILC method was first proposed by Uchiyama [157]1 in the late 70’s and further

developed by Arimoto et al. [158] and Craig [159] in the mid-80’s. Early contributions of

modified ILC schemes were investigated by many others including Kawamura et al. [160],

Atkeson et al. [161] and Bondi et al. [162]. Since the work of Arimoto’s group, the ILC

methodology has been studied for a variety of systems from linear [163] to nonlinear non-

minimum phase plants [164] and a thorough treatment of the subject can be found from

references [165, 166]. As a requirement, the system to be controlled must operate repet-

itively over a finite time interval. In practice, there are many applications for which the

operation is repetitive and the ILC methodology is a convenient solution for eliminating

errors. The approach has been applied to robotics [161], internal combustion engines [167]

and permanent magnet motors [168], for example.

In piezo-based applications, we note that the majority of tasks, such as AFM imaging [2]

and nanomanufacturing, require the piezo positioner to operate repetitively, e.g., the back

and forth lateral (x- and y) scanning movements. As such, ILC can be used to eliminate

errors due to hysteresis (as well as the affects of vibration and creep). One advantage of ILC

is it requires minimal system knowledge; therefore, it reduces the complexity of computing

the feedforward input [2].

Piezo

System

ILCA

vku
k

Σ vd

Σ
ek

u
k+1

+-

+

+

Figure 5.3: Block diagram of ILC scheme.

1The work was not well known at the time because it was written in Japanese.
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The contribution of this chapter is to solving an ILC problem for hysteretic systems.

Specifically, a proof of convergence for a standard iterative learning control algorithm is

presented. Afterwards, a detailed discussion of implementing the ILC algorithm, which

involves finding an approximate model of the hysteresis behavior, is presented in Chapter

6. The results show that the approach achieves nano-precision positioning and it is an

important contribution to the design of SPM-based tools for nanotechnologies.

The outline of this chapter is as follows. First, we formulate the problem in Section

5.2 and then discuss some past work and the challenges of proving convergence of ILC for

hysteretic systems. Next, we discuss in detail the convergence analysis, which is based

on the properties of the Preisach model from Chapter 4. Finally, this chapter closes with

concluding remarks in Section 5.4. Additionally, the ILC technique was experimentally

evaluated and results are presented in Chapter 6.

5.2 Problem Formulation

5.2.1 Notation

For convenience, we define the finite time interval

I , [t0, T ], (5.1)

where t0, T ∈ R and the following order holds: 0 ≤ t0 < T ≤ ∞. Also, we denote by C0(I)

the set of all continuous functions on I. Likewise, we let C0
m(I) and C0

pm(I) represent the set

of continuous monotone and piecewise monotone functions on I, respectively. We denote by

C0
m+(I) (respectively, C0

m−(I)) the set of all continuous nondecreasing (respectively, nonin-

creasing) functions on I. Moreover, we use the notion of pointwise ordering for functions

u1, u2 ∈ C0(Ia,b), where Ia,b , [ta, tb], e.g., u1 ≤ u2 implies u1(t) ≤ u2(t) for any t ∈ Ia,b.

Additionally, we will consider the standard infinity function norm || · ||∞, defined as

‖u(·)‖∞ , sup
∀t∈I

|u(t)|. (5.2)

We let N0 , 0 ∪ N, where N represents the set of all natural counting numbers, e.g.,

N = {1, 2, 3, · · · }.
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5.2.2 The Problem Statement

Consider a rate-independent2 hysteretic system of the form:

v(t) = H[u](t), ∀t ∈ I, (5.3)

where v(t) ∈ R is the output, u(t) ∈ R is the input and H is the Preisach hysteresis

operator which we assume satisfies the Preisach model Assumption 1. Given a desired

output trajectory vd ∈ C0(I), the objective is to find an input ud ∈ C0(I) by repetitively

applying the following iterative learning control algorithm (ILCA):

uk+1(t) = uk(t) + ρ[vd(t) − vk(t)], (5.4)

such that as the number of iterations k → ∞, uk → ud, and the input ud satisfies

vd(t) = H[ud](t), (5.5)

for all t ∈ I. In Eq. (5.4), uk+1 is the input at the next (k + 1)th trial, ρ is a constant

(to be determined), and uk and vk are the input and output at the kth trial, respectively.

Furthermore, we note that Eq. (5.4) is a typical proportional or P-type ILCA [163, 169] and

a justification for choosing the control in this form is discussed in more detail in Appendix

C, where the relative degree of the system is exploited in the design of the ILCA similar to

the works of [163, 16].

In Chapter 4, the model of a piezo positioner was considered as a nonlinear element

in series with a linear-time invariant dynamic block (refer to Fig. 4.1). In general, the

hysteresis output v cannot be measured directly; however, if the response of the system

is such that the dynamics effects (creep and vibration) are insignificant, then v can be

measured. Therefore, in formulating our iterative learning control problem, we will only

consider the hysteresis effect and operate over the range where hysteresis dominates, i.e.,

relatively fast to avoid creep and slow enough to keep from exciting vibrational modes of

the system. We note that iterative learning control has been extensively studied for LTI

systems, e.g., see [158, 165]. As a result, this thesis will solve an iterative learning control

2A formal definition of rate independence is discussed in reference [18], Section 2.2.
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problem for hysteretic systems. Afterwards, we will address future work of combining the

results of this thesis with the ILC of LTI systems, such as [164], as well as discuss other

potential applications for the method.

5.2.3 Past Work and Challenges

Iterative learning control has been developed for many types of systems, from LTI [17] to a

certain class of nonlinear systems with input and output disturbances [170]. More recently,

the approach has been adopted to nonlinear nonminimum phase systems [171]. Few studies,

however, have been done involving the ILC methodology for hysteretic systems. Particularly,

the problem has been a challenge to solve due to the complexity of the hysteresis behavior.

To this end, the objective of this thesis is to solve an ILC problem for hysteretic systems,

and we begin by reviewing the literature and highlighting the main challenges associated

with solving this problem.

In the past, few efforts to exploit the ILC methodology for hysteresis control have been

presented. For instance, in 1993, Li et al. [172] integrated the concept of ILC into an

adaptive controller. The ILC methodology was used to design a self-tuning regulator. The

objective was to use information from past operating trials to improve the estimation of

system parameters used by the regulator. Li et al. applied their technique to a piezoactuator

system for which they assumed a linear third-order model to describe the dynamic behavior.

(Note this approach did not explicitly address the hysteresis behavior.) In practice, their

approach had several noticeable drawbacks. First, the parameters to be identified came from

a linear third-order model. This model does not capture the nonlinear hysteresis behavior

typical of piezo-based systems. Therefore, the performance of the control system depends on

how close the estimates are to the real system parameters. As Main and Garcia [109] have

shown, hysteresis can alter the characteristics of a system significantly, potentially affecting

performance of the algorithm as well as its stability. Second, the initial conditions for the

parameter estimator were chosen arbitrarily. Therefore, the performance of the estimator,

as well as the closed-loop control system, depends on how close the initial guess was to the

actual system parameters.
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In 2001, Hu et al. [173] exploited the structure of ILCA Eq. (5.4) to control an elec-

trostrictive actuator. In an electrostrictive actuator, the strain depends on the square of the

applied field and such actuators exhibit a small amount of hysteresis, i.e., small compared

to piezoelectric actuators. They proposed a method to determine the learning gain ρ by

assuming that the hysteresis effect takes on a nominal quadratic input-output relationship

and then linearizing the system about an operating point similar to Newton’s method [174].

Their convergence analysis, however, did not explicitly include the full nonlinear-hysteresis

behavior, which includes the effect of branching (refer to Definition 3 in Chapter 4). Though

convergence of their scheme was proved, the analysis is limited to systems that satisfy the

assumptions of the approximate model, namely that the input-output relationship be a

nominal quadratic (single-valued) functional. But we emphasize that if a nonlinear system

exhibits an input-output behavior satisfying the assumptions of the quadratic model, then

convergence is guaranteed according to Hu’s group. But in general, nonlinear hysteresis

behavior includes the effect of past input history, which leads to multivalued and branching

effects, and it cannot be readily captured by polynomial approximations. Therefore, based

on their analysis, the convergence of ILCA Eq. (5.4) for general hysteretic systems remains

to be solved.

Other works include the micro-positioning of linear-piezoelectric motors based on learn-

ing nonlinear PID controller [168]. Also, a form of ILC was applied to a piezoelectric tool

servo system for variable depth of cut machining [175]. Tao and Kokotovic [176] studied

adaptive control for hysteretic systems. Similar to Li et al. and Hu et al.’s work, these previ-

ous studies did not explicitly deal with the full nonlinear-hysteresis behavior in the context

of proving ILC convergence. Recently, Venkataraman and Krishnaprasad [177] have shown,

based on the contraction mapping principle, that Eq. (5.4) converges if a nonlinear system

satisfies the incrementally strictly increasing operator (ISIO) property, which is defined as:

Definition 5 (Incrementally Strictly Increasing Operators [177]) An operator F :

C0(I) → C0(I) is called incrementally strictly increasing if, for u1, u2 ∈ C0(I) with u1 ≤ u2,

there exists constants η1 and η2 > 0 such that

η1(u2 − u1) ≤ F (u2) − F (u1) ≤ η2(u2 − u1). (5.6)
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A geometric interpretation of the incrementally strictly increasing property for two inputs

u1 and u2, with u1 ≤ u2 (recall our notion of pointwise ordering), is shown in Fig. 5.4.

According to Venkataraman and Krishnaprasad’s work, if one can show that a nonlinear

system satisfies this property, then by picking ρ = 1/η2, convergence of ILCA Eq. (5.4) is

guaranteed. (For reference, the proof of Venkataraman and Krishnaprasad’s work is pre-

sented in Appendix C, in expanded form.) Unfortunately, systems which exhibit hysteresis

do not satisfy the ISIO property (Definition 5). For example, consider the experimental

results in Fig. 5.5 measured from a piezo scanner used in a Burleigh Metris-2000NC atomic

force microscope imaging system. Figure 5.5(a) shows two inputs u1 and u2 defined on the

interval I = [0, T ] = [0, 0.8]s, with u1 ≤ u2. The first input u1 is zero for all t ∈ I and

the second input is a triangle signal with a period of 0.8s. The measured outputs, H[u1]

and H[u2], as a result of these two inputs, are shown in Fig. 5.4(c). Figure 5.5(b) shows

the hysteresis curve for the input-output pair (u2,H[u2]) and illustrates the multivalued or

looping behavior associated with hysteresis [18], i.e., the ascending and descending paths

in the input-output plane do not coincide. Particularly, the effect of looping (or branching)

causes the following behavior: after the input u2 achieves its maximum value and returns

to its initial value at time t = 0.8s, the corresponding output at time t = 0.8s differs by

a nonzero amount from its initial value, at time t = 0. As a result, there does not exist
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Figure 5.5: Experimental results that indicate hysteresis behavior does not satisfy the in-
crementally strictly increasing property.

a constant η2 > 0 such that the product η2(u2 − u1) is the upper bound for the difference

H[u2] − H[u1] as indicated in Fig. 5.4(d). Therefore, the experimental results show that

hysteresis does not satisfy the ISIO property, and Venkataraman and Krishnaprasad’s work

is not directly applicable; however, we note that their work is a significant contribution for

nonlinear systems that satisfy the ISIO property, namely convergence of ILCA Eq. (5.4) is

guaranteed for such systems.

In relation to the Preisach model, the failure to satisfy the ISIO property can also be

explained using the geometric interpretation of the model. For example, consider a uniform

Presiach weighting function µ(·, ·) = 1 and suppose that at time t0, the Preisach plane P

is partitioned by the initial memory curve L(t0) as shown in Fig. 5.6(a). Consequently, the

output at time t0 is related to the P+(t0) and P−(t0) regions. Next, we increase the input

from u0 to u1 ≤ ū, and the P+ regions increases as shown in Fig. 5.6(b). At this point,

the output v1 > v0 because of the expansion of the P+ set and reduction of the P− set.

Now, after the input peaks at u1, suppose the input experiences a monotonic decrease to
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the initial value u2 = u0, which causes the output to reduce by an amount that is related to

the triangular area Ω1 containing relays which have switched to the −1 state as indicated

in Fig. 5.6(c). It is easy to see that when the input returns to u0, the output v2 > v0 due

to the additional contributions of +1 relays in the area Ω2. In fact, further decrease in

the input is required to achieve the initial output value of v0, e.g., compare Fig. 4.8 from

the discussion of directionality in Chapter 4 and Fig. 5.6(d). As a result, the asymmetric

switching of the relays associated with increasing and decreasing inputs causes branching,

and the behavior in the Preisach plane clearly suggests that hysteresis behavior does not

satisfy the ISIO property.

The fact that hysteresis does not satisfy Definition 5 is not astonishing because given a

general desired trajectory vd ∈ C0(I), for any value ρ the ILCA Eq. (5.4) does not converge

as illustrated in the following example, where we make use of ‖ · ‖∞ norm. Consider the

hysteresis curve shown in Fig. 5.7(a). Suppose this hysteresis curve is the desired behavior

we would like the piezo positioner to achieve; therefore, the desired trajectory vd is the
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dashed-line curve in Fig. 5.7(c) and the input that achieves vd is the dashed line shown in

Fig. 5.7(b) labeled ud. Without loss of generality, assume that the initial input u0(t) = 0

for all t ∈ [0, T ] (e.g., the solid line in Fig. 5.7(b)). Likewise, the initial output is v0(t) = 0

for all t ∈ [0, T ] (e.g., the solid line in Fig. 5.7(c)). Now let ρ < 0, then immediately we

find that the sequence of inputs generated by ILCA Eq. (5.4) diverges from the desired

input ud as k → ∞ because vd − vk ≥ 0 for all k ∈ N, which causes uk ≤ 0 for all k ∈ N,

and ‖uk(·)‖∞ increases without bound as k → ∞. Now consider the case when ρ > 0.

For this case, we also find that convergence of Eq. (5.4) is not possible over [0, T ] for the

following reason: on the interval [0, T ], we find that vd(t) − v0(t) ≥ 0, then for any ρ > 0

and k = 1, the term on the LHS of Eq. (5.4) is strictly greater than zero for all t ∈ (0, T ],

hence ‖ud(·) − u1(·)‖∞ ≥ ‖ud(·) − u0(·)‖∞ implying that Eq. (5.4) fails to contract on the

first step. In particular, contraction fails because the shape of the hysteresis curve is such

that |δu(t1)| < |δu(T )| as shown in Figs. 5.7(a) and (b). Because of branching behavior,

where the ascending and descending paths in the u versus v plane do not coincide, the error

in the input fails to contract, hence converge.
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One main reason why it is challenging to show contraction of ILCA Eq. (5.4) is the

fact that the branching behavior leads to loss of directionality. As discussed previously in

Chapter 4, Section 4.3.4, the sign of the tracking error, i.e., vd−vk, does not provide enough

information about the direction in which the input should be changed in order to reduce the

tracking error. Because of the multivalued behavior of hysteresis, for a given output value,

there exists an uncountable set of possible inputs to achieve the output value. Therefore, in

general, the iterative learning control algorithm of the form Eq. (5.4) does not contract for

any constant ρ due to lack of direction information. We observe, however, that if the input-

output behavior was restricted to a single branch, then the sense of direction between the

input and output can be achieved. For instance, on one single hysteresis branch, knowing

the sign of the tracking error will provide the information needed to determine the direction

the input should be changed to reduce the tracking error. This is the key observation to

solving the convergence problem of ILCA Eq. (5.4). This observation also suggests that to

stay on one single branch, the desired output must be monotonic (cf. Preisach Property

4). Therefore, the convergence of the ILCA for hysteretic systems can be readily shown for

desired monotonic trajectories. An overview of the approach is presented in the following

section.

5.2.4 Overview of the Approach

When the input-output behavior of a hysteretic system belongs on a single branch, the

tracking error can be used to appropriately change the input to reduce the tracking error.

The notion of direction is critical for the convergence of gradient-based searching algorithms.

Motivated by this observation, the approach to proving convergence of the ILCA Eq. (5.4)

is presented as follows. First we note that if the desired trajectory vd ∈ C0(I) is monotonic,

then by the Preisach Property 4, the input that achieves vd is also monotonic, and of the

same sign. This suggests that the input-output pair (ud, vd) traces out a single branch in

the u− v plane. Now, if the ILCA Eq. (5.4) generates input-output points (uk,H[uk]) that

belong on the same single branch, then over the course of the iteration process, the direction

to change the input to reduce the tracking error is known. By exploiting the properties of the
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Preisach hysteresis behavior on a branch, we find a solution to our ILC convergence problem.

Again, the key requirement is that the desired trajectory be monotonic on the interval I

so that the input-output behavior belongs on a single branch. As a result, convergence is

proved for monotonic trajectories. Afterwards, we propose an algorithm to show convergence

of general trajectories with more than one monotonic section by partitioned the desired

output trajectory into N∗ monotonic sections as shown in Fig. 5.8, and apply the results

of the monotonic section to each individual section. In practice, the desired trajectory will

contain a finite number of monotonic partitions and this thesis shows that convergence

occurs branch-by-branch. In the end, we quantify the required number of iterations to

realize a prescribed tracking precision. Finally, the theoretical developments are applied to

an experimental atomic force microscope system to demonstrate the efficacy of the method

in Chapter 6. We discuss in detail the process of implementing the iterative learning control

algorithm for AFM imaging of a calibration sample. Our results show that the approach

reduces hysteresis-caused positioning error by approximately an order of magnitude (roughly

down to the noise level of the sensor measurement) compared to the feedback and model-

based feedforward approach presented in Chapter 3. As a result, we demonstrate that the

ILCA Eq. (5.4) can be employed for precision output tracking in SPM-based applications.

Additionally, we note that the hysteresis-compensating feedforward input generated by this

approach can be used to further improve the precision of integrated feedback/feedforward

schemes, e.g., [145].
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Figure 5.8: Monotonic partitioning of the desired output.



77

5.3 Convergence Analysis

In this section we prove convergence of the ILCA Eq. (5.4). We start by proving convergence

for monotonic trajectories because the direction is known on a branch. This approach takes

advantage of the property of the Preisach operator on a branch, which is presented in the

following. For example, if the input-output pair (u,H[u]) belongs on a branch, then the

sign of the output error can be used to iteratively find an input that achieves a desired

trajectory, hence, ILCA Eq. (5.4) converges. Afterwards, an algorithm is presented to

extend the following results to general trajectories with more than one monotonic section.

5.3.1 Preisach Property on a Branch

The following property simply states that given two inputs on a single branch, the outputs

associated with the two inputs are bounded above and below by functions of the difference

in the inputs.

Lemma 1 (Property of a Branch) Let Presiach model Assumption 1 hold and L0 be an

initial memory curve. Given u1, u2 ∈ C0
m+(I) (respectively, u1, u2 ∈ C0

m−(I)) such that

(u1,H[u1]), (u2,H[u2]) ∈ B↑[·, L0] (respectively, (u1,H[u1]), (u2,H[u2]) ∈ B↓[·, L0]) and if

u1(t1) ≤ u2(t2) for any t1, t2 ∈ I, then

Φ
(

u2(t2) − u1(t1)
)

≤ H[u2](t2) −H[u1](t1) ≤ η2 ×
(

u2(t2) − u1(t1)
)

, (5.7)

where

Φ
(

u2(t2) − u1(t1)
)

=



















µ
(

u2(t2) − u1(t1)
)2

when
(

u2(t2) − u1(t1)
)

≤ ξ,

µ
[

2ξ
(

u2(t2) − u1(t1)
)

− ξ2
]

when
(

u2(t2) − u1(t1)
)

> ξ,

(5.8)

η2 = 2µmax(ū − u). (5.9)

Proof

We first prove for the nondecreasing case, i.e., u1, u2 ∈ C0
m+(I). Since the pairs (u1,H[u1])

and (u2,H[u2]) ∈ B↑[·, L0], then at time t0, the memory curve L0 associated with both

inputs u1 and u2 are the same. Consequently, u1, u2 ∈ C0
m+(I) implies the inputs u1(t)
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and u2(t) for any t ∈ I will have caused the last link of the memory curve associated with

each input to sweep horizontally upward (recall the geometric interpretation of the Preisach

model in Chapter 4). As a result, if u1(t1) ≤ u2(t2) for any t1, t2 ∈ I, then the Presiach plane

is partitioned as shown in Fig. 5.9(b) where the output difference H[u2](t2) − H[u1](t1) is

related to the difference in the regions P2+(t2) and P1+(t1). Let Ω̂ represent the difference

in these regions as shown in Fig. 5.9(b). Taking into account Eq. (4.9) for the output of

the Preisach model and using the fact that P2+(t2) = P1+(t1)∪ Ω̂, we find that the largest

region Ω̂ as illustrated in Fig. 5.9(c) yields

H[u2](t2) −H[u1](t1) = 2

∫∫

P2+(t2)

µ(α, β)dαdβ − 2

∫∫

P1+(t1)

µ(α, β)dαdβ,

= 2

∫∫

Ω̂

µ(α, β)dαdβ,

≤ 2µmax

∫∫

Ω̂

dαdβ,

≤ 2µmax

[

(

ū − u
)(

u2(t2) − u1(t1)
)

− 1

2

(

u2(t2) − u1(t1)
)2

]

,

≤ 2µmax

(

ū−u
)(

u2(t2)−u1(t1)
)

,

(5.10)

for any t1, t2 ∈ I. Likewise, the smallest region for Ω̂ is a triangle where two possible cases

exist when we consider the Preisach model Assumption 1:

Case 1: when
(

u2(t2)−u1(t1)
)

≤ ξ (refer to Fig. 5.9(d)), Ω̂ = Ω̂0∪Ω̂+ where Ω̂0 = ∅,

therefore

H[u2](t2) −H[u1](t1) = 2

∫∫

Ω̂+

µ(α, β)dαdβ,

≥ 2µ

∫∫

Ω̂

dαdβ,

≥ 2µ

[

1

2

(

u2(t2) − u1(t1)
)2

]

,

≥ µ
(

u2(t2) − u1(t1)
)2

, (5.11)

for any t1, t2 ∈ I.
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Case 2: when
(

u2(t2) − u1(t2)
)

> ξ (refer to Fig. 5.9(d)),

H[u2](t2) −H[u1](t1) = 2

∫∫

Ω̂

µ(α, β)dαdβ,

≥ 2

∫∫

Ω̂0

µ(α, β)dαdβ + 2µ

∫∫

Ω̂+

dαdβ.

≥ 2µ

∫∫

Ω̂+

dαdβ,

≥ 2µ

[

1

2

(

u2(t2) − u1(t1)
)2 − 1

2

(

(

u2(t2) − u1(t1)
)

− ξ
)2

]

,

≥ µ
[

2ξ
(

u2(t2) − u1(t1)
)

− ξ2
]

, (5.12)

for any t1, t2 ∈ I.

The proof for the nonincreasing case, i.e., u1, u2 ∈ C0
m−(I), follows directly from the

above procedures; however, the difference is the inputs u1(t) and u2(t) for any t ∈ I will have

caused the last link of the memory curve associated with each input to sweep vertically from

right to left (recall the geometric interpretation of the Preisach model in Chapter 4). Also,

we note that if u1(t1) ≤ u2(t2) for any t1, t2 ∈ I, the output difference H[u2](t2)−H[u1](t1)

is related to the difference in the regions P2+(t2) and P1+(t1) and based on the geometry

of the Preisach plane, Eqs. (5.10)–(5.12) hold, which completes the proof.

5.3.2 The ILCA Generates a Sequence of Monotonic Inputs

This section shows that for a Preisach hysteretic system, using the ILCA Eq. (5.4), where

the initial input is chosen to be monotonic, the resulting sequence of inputs generated by

the ILCA will also be monotonic and of the same sign. For example, suppose that there

is a branch B[ud(·), L0] that is associated with (ud,H[ud]), which originates from the point

(u(t0), v(t0)). If the initial input u0 is chosen to be nondecreasing (respectively, nonincreas-

ing) with u0(t0) compatible with the initial memory curve L0, then subsequent inputs gen-

erated by the ILCA will also be nondecreasing (respectively, nonincreasing), and hence the

branch B[uk(·), L0] is the same as B[ud(·), L0]. This result implies that the pair (uk,H[uk]),

for all k ∈ N, belongs on the same branch that is associated with the pair (ud,H[ud]). And
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since the pair (uk,H[uk]) belongs on a single and known branch, directionality is achieved

and the results of Lemma 1 applies for all k ∈ N iterations. By achieving directional-

ity we can show that the ILCA converges for monotonic trajectories. It is important to

note that each input sequence generated by the ILCA remains monotonic (and of the same

sign as the desired trajectory), implying that additional branches cannot be generated. By

Lemma 1, the property on a branch only applies to a single branch and it is not valid for a

chain of branches. We note that generating additional branches leads to a loss in direction

information, a behavior that must be avoided.

After establishing convergence for a monotonic desired trajectory vd, then the method

is extended to show convergence for a general desired trajectory vd ∈ C0(I). Basically, the

approach to this problem is to partition the desired trajectory into monotonic sections as

illustrated in Fig. 5.8 and then develop an algorithm which incorporates the convergence

proof for a single branch to prove convergence for all monotonic sections. We begin with

the following initial condition requirement and then formally show that the ILCA generates

a sequence of monotonic inputs.

Assumption 2 (Initial Condition Requirement) The initial memory curves at time

t0 associated with each input sequence uk(t0) for k ∈ N0 are the same, i.e., L(t0) is the

same at the start of each iteration.

Lemma 2 (Input Monotonicity) Consider a hysteretic system of the form v(t) = H[u](t).

Let the Preisach hysteresis operator H : C0(I) → C0(I), with initial memory curve L0,

satisfy the Presiach model Assumption 1 and the initial condition Assumption 2. Given

vd ∈ C0
m+(I) (respectively, vd ∈ C0

m−(I)), pick u0 ∈ C0
m+(I) (respectively, u0 ∈ C0

m−(I))

and if 0 < ρ ≤ 1/η2, then the input sequence generated by the ILC control law Eq. (5.4) is

such that uk ∈ C0
m+(I) (respectively, uk ∈ C0

m−(I)), for all k ∈ N.

Proof

We prove by method of induction, first for the nondecreasing case, then for the nonincreasing

case. First, by the Preisach Property 4, given vd ∈ C0
m+(I) (respectively, vd ∈ C0

m−(I))

implies that ud ∈ C0
m+(I) (respectively, ud ∈ C0

m−(I)), and so the pair (ud,H[ud]) ∈ B↑[·, L0]
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(respectively, (ud,H[ud]) ∈ B↓[·, L0]), where the initial memory curve L0 is associated with

the input-output pair vd and ud. For the nondecreasing case (i.e., u0, ud, vd ∈ C0
m+(I))

when k = 0 and by ILCA Eq. (5.4), for any t1 < t2 ∈ I with u0, vd ∈ C0
m+(I), we have

u1(t2) − u1(t1) = u0(t2) + ρ
(

H[ud](t2) −H[u0](t2)
)

− u0(t1)

−ρ
(

H[ud](t1) −H[u0](t1)
)

. (5.13)

Substituting the terms in the above expression with the result of Lemma 1 and collecting

terms, we obtain for the two cases:

Case 1: when
(

u(t2) − u(t1)
)

≤ ξ, we have

u1(t2) − u1(t1) =
(

u0(t2) − u0(t1)
)

+ ρ
(

H[ud](t2) −H[ud](t1)
)

−ρ
(

H[u0](t2) −H[u0](t1)
)

,

≥
(

u0(t2) − u0(t1)
)

+ ρµ
(

ud(t2) − ud(t1)
)2

−ρη2

(

u0(t2) − u0(t1)
)

,

≥
(

1 − ρη2

)(

u0(t2) − u0(t1)
)

+ ρµ
(

ud(t2) − ud(t1)
)2

≥ 0, (5.14)

for any t1 < t2 ∈ I because u0, ud ∈ C0
m+(I) and

0 < 2ρµmax(ū − u) = ρη2 ≤ 1. (5.15)

Case 2: when
(

u(t2) − u(t1)
)

> ξ, we have

u1(t2) − u1(t1) =
(

u0(t2) − u0(t1)
)

+ ρ
(

H[ud](t2) −H[ud](t1)
)

−ρ
(

H[u0](t2) −H[u0](t1)
)

,

≥
(

u0(t2) − u0(t1)
)

+ ρµ
[

2ξ
(

ud(t2) − ud(t1)
)

− ξ2
]

−ρη2

(

u0(t2) − u0(t1)
)

,

≥
(

1 − ρη2

)(

u0(t2) − u0(t1)
)

+ ρµ
[

2ξ
(

ud(t2) − ud(t1)
)

− ξ2
]

,

≥ 0, (5.16)

for any t1 < t2 ∈ I because u0, ud ∈ C0
m+(I) and Eq. (5.15) holds.
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Therefore, we conclude that u1 ∈ C0
m+(I). Now, suppose for k, uk ∈ C0

m+(I), then for

any t1, t2 ∈ I such that t1 < t2, Eq. (5.4) gives us the following:

Case 1: when
(

u(t2) − u(t1)
)

≤ ξ, we have

uk+1(t2) − uk+1(t1) =
(

uk(t2) − uk(t1)
)

+ ρ
(

H[ud](t2) −H[ud](t1)
)

−ρ
(

H[uk](t2) −H[uk](t1)
)

,

≥
(

1 − ρη2

)(

uk(t2) − uk(t1)
)

+ ρµ
(

ud(t2) − ud(t1)
)2

,

≥ 0, (5.17)

for any t1 < t2 ∈ I because uk, ud ∈ C0
m+(I) and Eq. (5.15) holds.

Case 2: when
(

u(t2) − u(t1)
)

> ξ, we have

u1(t2) − u1(t1) =
(

uk(t2) − uk(t1)
)

+ ρ
(

H[ud](t2) −H[ud](t1)
)

−ρ
(

H[uk](t2) −H[uk](t1)
)

,

≥
(

uk(t2) − uk(t1)
)

+ ρµ
[

2ξ
(

ud(t2) − ud(t1)
)

− ξ2
]

−ρη2

(

uk(t2) − uk(t1)
)

,

≥
(

1 − ρη2

)(

uk(t2) − uk(t1)
)

+ ρµ
[

2ξ
(

ud(t2) − ud(t1)
)

− ξ2
]

≥ 0, (5.18)

for any t1 < t2 ∈ I because uk, ud ∈ C0
m+(I) and Eq. (5.15) holds.

As a result, we find that uk+1 ∈ C0
m+(I) and by induction we conclude that uk ∈ C0

m+(I)

for all k ∈ N.

Now we prove the assertion for the nonincreasing case, i.e., u0, ud, vd ∈ C0
m−(I). The

proof is the same as the previous result, except for the ordering that u(t1) ≥ u(t2) (because

u ∈ C0
m−(I)). For instance, when k = 0 and by Eq. (5.4), for any t1 < t2 ∈ I with

u0, vd ∈ C0
m−(I), we have

u1(t1) − u1(t2) = u0(t1) + ρ
(

H[ud](t1) −H[u0](t1)
)

− u0(t2)

−ρ
(

H[ud](t2) −H[u0](t2)
)

. (5.19)
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Substituting the terms in the above expression with the result of Lemma 1 and collecting

terms, we obtain for the two cases:

Case 1: when
(

u(t1) − u(t2)
)

≤ ξ, we have

u1(t1) − u1(t2) =
(

u0(t1) − u0(t2)
)

+ ρ
(

H[ud](t1) −H[ud](t2)
)

−ρ
(

H[u0](t1) −H[u0](t2)
)

,

≥
(

u0(t1) − u0(t2)
)

+ ρµ
(

ud(t1) − ud(t2)
)2

−ρη2

(

u0(t1) − u0(t2)
)

,

≥
(

1 − ρη2

)(

u0(t1) − u0(t2)
)

+ ρµ
(

ud(t1) − ud(t2)
)2

,

≥ 0, (5.20)

for any t1 < t2 ∈ I because u0, ud ∈ C0
m−(I) and Eq. (5.15) holds.

Case 2: when (u(t1) − u(t2)) > ξ, we have

u1(t1) − u1(t2) =
(

u0(t1) − u0(t2)
)

+ ρ
(

H[ud](t1) −H[ud](t2)
)

−ρ
(

H[u0](t1) −H[u0](t2)
)

,

≥
(

u0(t1) − u0(t2)
)

+ ρµ
[

2ξ
(

ud(t1) − ud(t2)
)

− ξ2
]

−ρη2

(

u0(t1) − u0(t2)
)

,

≥
(

1 − ρη2

)(

u0(t1) − u0(t2)
)

+ ρµ
[

2ξ
(

ud(t1) − ud(t2)
)

− ξ2
]

,

≥ 0, (5.21)

for any t1 < t2 ∈ I because u0, ud ∈ C0
m−(I) and Eq. (5.15) holds.

As a result, we conclude that u1 ∈ C0
m−(I). Now, suppose for k, uk ∈ C0

m−(I), then for

any t1, t2 ∈ I such that t1 < t2, Eq. (5.4) gives us the following:

Case 1: when
(

u(t1) − u(t2)
)

≤ ξ, we have

uk+1(t1) − uk+1(t2) =
(

uk(t1) − uk(t2)
)

+ ρ
(

H[ud](t1) −H[ud](t2)
)

−ρ
(

H[uk](t1) −H[uk](t2)
)

,

≥
(

1 − ρη2

)(

uk(t1) − uk(t2)
)

+ ρµ
(

ud(t1) − ud(t2)
)2

,

≥ 0, (5.22)
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for any t1 < t2 ∈ I because uk, ud ∈ C0
m−(I) and Eq. (5.15) holds.

Case 2: when
(

u(t1) − u(t2)
)

> ξ, we have

uk+1(t1) − uk+1(t2) =
(

uk(t1) − uk(t2)
)

+ ρ
(

H[ud](t1) −H[ud](t2)
)

−ρ
(

H[uk](t1) −H[uk](t2)
)

,

≥
(

uk(t1) − uk(t2)
)

+ ρµ
[

2ξ
(

ud(t1) − ud(t2)
)

− ξ2
]

−ρη2

(

uk(t1) − uk(t2)
)

,

≥
(

1 − ρη2

)(

uk(t1) − uk(t2)
)

+ ρµ
[

2ξ
(

ud(t1) − ud(t2)
)

− ξ2
]

,

≥ 0, (5.23)

for any t1 < t2 ∈ I because uk, ud ∈ C0
m−(I) and Eq. (5.15) holds.

As a result, we find that uk+1 ∈ C0
m−(I) and by induction we conclude that uk ∈ C0

m−(I)

for all k ∈ N. This completes the proof.

In summary, the results for the above lemma ensures that the Preisach property on a

branch (Lemma 1) applies for all k ∈ N0 when the ILCA Eq. (5.4) is used. Furthermore, the

results guarantee that if 0 < ρ ≤ 1/η2, then the ILCA when applied to the hysteretic system

does not generate any additional branches, i.e., the input sequence remains monotonic and

of the same sign as the desired trajectory. Now we are ready to present our main result.

5.3.3 Convergence for Monotonic Trajectories

The following theorem states that if the desired trajectory is monotonic and under certain

conditions, the ILCA Eq. (5.4) converges:

Theorem 1 (Convergence for Monotonic Trajectories) Consider a hysteretic system

of the form v(t) = H[u](t). Let the Preisach hysteresis operator H : C0(I) → C0(I), with

initial memory curve L0, satisfy the Presiach model Assumption 1 and the initial condition

Assumption 2. Given vd ∈ C0
m+(I) (respectively, vd ∈ C0

m−(I)), pick u0 ∈ C0
m+(I) (re-

spectively, u0 ∈ C0
m−(I)) and if 0 < ρ ≤ 1/η2, then the iterative learning control algorithm

Eq. (5.4) converges, i.e., uk(t) → ud(t), as k → ∞ for every t ∈ I.
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Proof

Overview For convenience, we define δuk(t) , ud(t) − uk(t). The objective is to show

the terms of the sequence {|δuk(t)|} decays to zero as k → ∞, for all t ∈ I. The following

proof is analogous to showing a system is stable in the Lyapunov sense [178], where in this

case the candidate Lyapunov function is the sequence {|δuk(t)|}. The outline of the proof

is as follows. Step 1: First, we show that the sequence {|δuk(t)|}, for any t ∈ I, decreases

monotonically as k → ∞ and it is bounded, therefore the sequence converges [179]. Step

2: Second, we show that the sequence {|δuk(t)|} converges to the limit zero, the sequence’s

greatest lower bound, for all t ∈ I, hence uk(t) → ud(t) as k → ∞. In the following, the

proof of each step is presented and they are as follows:

Step 1: In this step, we prove that the sequence {|δuk(t)|}k∈N0
decreases monotonically

as k → ∞ and it is bounded. We prove by method of induction. First, we immediately

note that vd ∈ C0
m+(I) (respectively, vd ∈ C0

m−(I)) implies ud ∈ C0
m+(I) (respectively, ud ∈

C0
m−(I)) (See Preisach Property 4). Also, we assume that vd, u0 ∈ C0

m+(I) (nondecreasing

case). For k = 0, suppose u0(t) ≤ ud(t) at t ∈ I. Using ILCA Eq. (5.4) and the results of

Lemma 1, we find that

ud(t) − u1(t) = ud(t) − u0(t) − ρ
(

H[ud](t) −H[u0](t)
)

≤ ud(t) − u0(t), (5.24)

at t ∈ I. Likewise,

ud(t) − u1(t) = ud(t) − u0(t) − ρ
(

H[ud](t) −H[u0](t)
)

,

≥ ud(t) − u0(t) − ρη2

(

ud(t) − u0(t)
)

,

≥
(

1 − ρη2

)(

ud(t) − u0(t)
)

,

≥ 0, (5.25)

at t ∈ I because 0 < ρη2 ≤ 1. Consequently, Eqs. (5.24) and (5.25) give us

0 ≤ ud(t) − u1(t) ≤ ud(t) − u0(t), at t ∈ I. (5.26)
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Now suppose that u0(t) ≥ ud(t) at t ∈ I, then ILCA Eq. (5.4) and the results of Lemma 1

lead to

u1(t) − ud(t) = u0(t) + ρ
(

H[ud](t) −H[u0](t)
)

− ud(t),

= u0(t) − ρ
(

H[u0](t) −H[ud](t)
)

− ud(t),

≤ u0(t) − ud(t), (5.27)

at t ∈ I. Additionally, we find that

u1(t) − ud(t) ≥
(

1 − ρη2

)(

u0(t) − ud(t)
)

≥ 0, (5.28)

at t ∈ I because 0 < ρη2 ≤ 1. As a result, Eqs. (5.27) and (5.28) imply

ud(t) − u0(t) ≤ ud(t) − u1(t) ≤ 0, (5.29)

and from Eqs. (5.26) and (5.29), we conclude that

|ud(t) − u1(t)| ≤ |ud(t) − u0(t)|, (5.30)

at t ∈ I. Now, since on a branch Eq. (5.30) holds if u0(t) ≤ ud(t) at t ∈ I, or if u0(t) ≥ ud(t)

at t ∈ I, and t was chosen arbitrarily, then Eq. (5.30) is satisfied for any t ∈ I.

Next, suppose for k, uk(t) ≤ ud(t) at t ∈ I. Using ILCA Eq. (5.4) and the results of

Lemma 1, we can write

ud(t) − uk+1(t) = ud(t) − uk(t) − ρ
(

H[ud](t) −H[uk](t)
)

≤ ud(t) − uk(t), (5.31)

at t ∈ I. Similarly,

ud(t) − uk+1(t) = ud(t) − uk(t) − ρ
(

H[ud](t) −H[uk](t)
)

≥ ud(t) − uk(t) − ρη2

(

ud(t) − uk(t)
)

≥
(

1 − ρη2

)(

ud(t) − uk(t)
)

≥ 0, at t ∈ I, (5.32)

because 0 < ρη2 ≤ 1. Consequently, Eqs. (5.31) and (5.32) give us

0 ≤ ud(t) − uk+1(t) ≤ ud(t) − uk(t), at t ∈ I. (5.33)
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Now suppose that uk(t) ≥ ud(t) at t ∈ I, then ILCA Eq. (5.4) and the results of Lemma 1

lead to

uk+1(t) − ud(t) = uk(t) + ρ
(

H[ud](t) −H[uk](t)
)

− ud(t) ≤ uk(t) − ud(t), (5.34)

at t ∈ I. Additionally, we find that

uk+1(t) − ud(t) ≥
(

1 − ρη2

)(

uk(t) − ud(t)
)

≥ 0, at t ∈ I. (5.35)

As a result, Eqs. (5.34) and (5.35) imply

ud(t) − uk(t) ≤ ud(t) − uk+1(t) ≤ 0, (5.36)

at t ∈ I and from Eqs. (5.33) and (5.36), we conclude that

|ud(t) − uk+1(t)| ≤ |ud(t) − uk(t)|, at t ∈ I. (5.37)

Now, since on a branch Eq. (5.37) holds if uk(t) ≤ ud(t) at t ∈ I, or if uk(t) ≥ ud(t) at

t ∈ I, and t was chosen arbitrarily, then Eq. (5.37) is satisfied for any t ∈ I. Additionally,

since k was chosen arbitrarily, we conclude by induction that Eq. (5.37) holds for k ∈ N0,

implying that {|δuk(t)|} decreases monotonically in k. Furthermore, we observe that the

sequence {|δuk(t)|} is bounded from above by ‖δu0(·)‖∞, where the function norm ‖ · ‖∞
is defined by Eq. (5.2). Since {|δuk(t)|} is nonnegative and decreases monotonically in k, it

is also bounded from below by zero. Therefore, the bounded sequence {|δuk(t)|} converges

[179] for the nondecreasing case.

Finally, we note that Eqs. (5.24)–(5.37) also apply to the nonincreasing case, i.e., u0, vd ∈
C0

m−(I), therefore the sequence {|δuk(t)|} decreases monotonically in k for any t ∈ I.

Additionally, it is bounded from above by ‖δu0(·)‖∞ and bounded from below by zero;

therefore, we conclude that the bounded sequence {|δuk(t)|} converges for the nonincreasing

case. This completes the proof of Step 1.

Step 2: In this step we show that the sequence {|δuk(t)|} converges to zero. We know

from the previous step that the nonnegative sequence {|δuk(t)|} decreases monotonically

and it is bounded from above by the constant ‖δu0(·)‖∞ and bounded from below by zero
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(because it is nonnegative). As a result, the sequence {|δuk(t)|} converges and its limit point

is a ≥ 0 [179]. Now we prove that the limit point of the sequence a = 0 by contradiction. If

we consider the ILCA Eq. (5.4), then we find for the following two cases:

Case 1: δuk =
(

ud(t) − uk(t)
)

≤ ξ. First, suppose that u0(t) ≤ ud(t) at t ∈ I. From

Step 1, u0(t) ≤ ud(t) implies that uk(t) ≤ ud(t), for all k ∈ N. Consequently, by the

ILCA Eq. (5.4) and the results of Lemma 1, we find that

ud(t) − uk+1(t) = ud(t) − uk(t) − ρ
(

H[ud](t) −H[uk](t)
)

,

≤ ud(t) − uk(t) − ρµ
(

ud(t) − uk(t)
)2

. (5.38)

Furthermore, by Lemma 2 we get

0 ≤ ud(t) − uk+1(t) ≤ ud(t) − uk(t) − ρµ
(

ud(t) − uk(t)
)2

. (5.39)

Similarly, when u0(t) ≥ ud(t) at t ∈ I, from Step 1 and the results of Lemma 1, we

find

uk+1(t) − ud(t) = uk(t) + ρ
(

H[ud](t) −H[uk](t)
)

− ud(t),

≤ uk(t) − ud(t) − ρµ
(

uk(t) − ud(t)
)2

, (5.40)

and also by Lemma 2, we obtain

0 ≥ ud(t) − uk+1(t) ≥ ud(t) − uk(t) + ρµ
(

ud(t) − uk(t)
)2

. (5.41)

Then, considering the absolute value, Eqs. (5.39) and (5.41) yield

|ud(t) − uk+1(t)| ≤ |ud(t) − uk(t)| − ρµ|ud(t) − uk(t)|2,

|δuk+1(t)| ≤ |δuk(t)| − ρµ|δuk(t)|2, (5.42)

Now suppose for contradiction that the limit point for the sequence {|δuk(t)|} is a > 0.

Subtracting |δuk(t)| from both sides of Eq. (5.42), taking limits of both sides and using

the properties of limits, we obtain

|δuk+1(t)| − |δuk(t)| ≤ −ρµ|δuk(t)|2,

lim
k→∞

{

|δuk+1(t)| − δ|uk(t)|
}

≤ − lim
k→∞

{

ρµ|δuk(t)|2
}

,

a − a ≤ −ρµ lim
k→∞

{

|δuk(t)|2
}

,

0 ≤ −ρµa2. (5.43)
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Since we have assumed that a > 0, and 0 < ρ ≤ 1/η2 and µ > 0, we arrive at a

contradiction. Therefore, we conclude that the limit point a = 0, which implies that

{|δuk(t)|} → 0 as k → ∞ at t ∈ I, hence uk(t) → ud(t) as k → ∞. Additionally, since

t ∈ I was chosen arbitrarily, we conclude that uk(t) → ud(t) as k → ∞, for any t ∈ I.

Case 2: δuk =
(

ud(t) − uk(t)
)

> ξ. First, suppose that u0(t) ≤ ud(t) at t ∈ I. From

Step 1, u0(t) ≤ ud(t) implies that uk(t) ≤ ud(t), for all k ∈ N. Consequently, by the

ILCA Eq. (5.4) and the results of Lemma 1, we find that

ud(t) − uk+1(t) = ud(t) − uk(t) − ρ
(

vd(t) − vk(t)
)

,

≤ ud(t) − uk(t) − ρµ
[

2ξ
(

ud(t) − uk(t)
)

− ξ2
]

,

≤ ud(t) − uk(t) − ρµξ
(

ud(t) − uk(t)
)

. (5.44)

Figure 5.10 shows a geometric representation for the upper bound in Eq. (5.44). Fur-

thermore, by Lemma 2 we get

0 ≤ ud(t) − uk+1(t) ≤ ud(t) − uk(t) − ρµξ
(

ud(t) − uk(t)
)

. (5.45)

δu  (t)k

2ρµξδu  (t)k
ρµξδu  (t)k

ρµξ2
2

1

3

δu  (t) > ξk
(+)

(-)

Figure 5.10: Geometric representation for the upper bound in Eq. (5.44).
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Similarly, when uk(t) ≥ ud(t) at t ∈ I, we find that

uk+1(t) − ud(t) = uk(t) + ρ
(

vd(t) − vk(t)
)

− ud(t),

≤ uk(t) − ud(t) − ρµ
[

2ξ
(

uk(t) − ud(t)
)

− ξ2
]

,

≤ uk(t) − ud(t) − ρµξ
(

uk(t) − ud(t)
)

, (5.46)

and also by Lemma 2, we obtain

0 ≥ ud(t) − uk+1(t) ≥ ud(t) − uk(t) + ρµξ
(

ud(t) − uk(t)
)

. (5.47)

Then, considering the absolute value, Eqs. (5.45) and (5.47) yield

|ud(t) − uk+1(t)
∣

∣ ≤ |ud(t) − uk(t)| − ρµξ|ud(t) − uk(t)|,

|δuk+1(t)| ≤ |δuk(t)| − ρµξ|δuk(t)|. (5.48)

Now suppose for contradiction that the limit point for the sequence {|δuk(t)|} is a > 0.

Subtracting |δuk(t)| from both sides of Eq. (5.48), then taking limits of both sides and

using the properties of limits, we find that

|δuk+1(t)| − |δuk(t)| ≤ −ρµξ|δuk(t)|,

lim
k→∞

{

|δuk+1(t)| − |δuk(t)|
}

≤ lim
k→∞

{

− ρµξ|δuk(t)|
}

,

a − a ≤ −ρµξ lim
k→∞

{

|δuk(t)|
}

,

0 ≤ −ρµξa. (5.49)

Since we have assumed that a > 0, and 0 < ρ ≤ 1/η2 and µ, ξ > 0, we arrive at a

contradiction, therefore conclude that the limit point a = 0. Then, {|δuk(t)|} → 0 as

k → ∞ at t ∈ I, hence uk(t) → ud(t) as k → ∞. Additionally, since t ∈ I was chosen

arbitrarily, we find that δuk(t) → 0 as k → ∞, for any t ∈ I. This completes the proof

of Step 2.

By Steps 1 and 2 we conclude that the ILCA Eq. (5.4) converges when 0 < ρ ≤ 1/η2,

and the desired trajectory and initial input are monotonic of the same sign. Moreover, the

limit of the sequence {|δuk(t)|} is zero, which implies that uk(t) → ud(t) as k → ∞, for all

t ∈ I. This completes the proof.
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In summary, the ILCA Eq. (5.4) converges if:

1. The hysteresis behavior satisfies the Presiach model Assumption 1.

2. The initial condition is reset at each iteration, i.e., u0(t0) = uk(t0) for all k ∈ N

(Assumption 2).

3. The constant 0 < ρ ≤ 1/η2 where η2 = 2µmax(ū − u).

4. The desired trajectory is continuous and monotonic on I, i.e., vd ∈ C0
m(I).

5.3.4 Properties of Convergence

In the following, we present the rate of convergence for the ILCA Eq. (5.4) in terms of the

parameters of the Preisach model. Also, we quantify the number of iterations required to

achieve a prescribed tracking precision ε > 0. In Chapter 6, the theoretical work will be

compared with experimental results.

Theorem 2 (Rate of Convergence) Let the conditions of Theorem 1 hold and ε > 0 be

the desired tracking precision in the output, i.e., there exists M ∈ N such that ‖vd(·) −
vk(·)‖∞ < ε, for all k > M . Then, the rates of convergence of ILCA Eq. (5.4) are:

Case 1: when ε/(2η2) ≤ ξ ⇒ ‖ud(·) − uk(·)‖∞ ≤ ξ,

∥

∥vd(·) − vk+1(·)
∥

∥

∞
≤

(

1 − ρµ‖vd(·) − v0(·)‖∞
)∥

∥vd(·) − vk(·)
∥

∥

∞
≤

(

1 − ρµ‖vd(·) − vk(·)‖∞
)∥

∥vd(·) − vk(·)
∥

∥

∞
≤

(

1 − ρµε
)∥

∥vd(·) − vk(·)
∥

∥

∞
(5.50)

Case 2: when ε/(2η2) > ξ ⇒ ‖ud(·) − uk(·)‖∞ > ξ,

∥

∥vd(·) − vk+1(·)
∥

∥

∞
≤

∥

∥vd(·) − vk(·)
∥

∥

∞
− 2η2ρµξ2, (5.51)

where the norm ‖ · ‖∞ is defined in Eq. (5.2).
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Proof

Case 1: when ε/(2η2) ≤ ξ ⇒ ‖ud(·) − uk(·)‖∞ ≤ ξ. Suppose uk(t) ≤ ud(t) at t ∈ I, then

by ILCA Eq. (5.4) and the results of Lemma 1 we find that

ud(t) − uk+1(t) = ud(t) − uk(t) − ρ
(

vd(t) − vk(t)
)

,

≤ ud(t) − uk(t) − ρµ
(

ud(t) − uk(t)
)2

. (5.52)

Furthermore, by Lemma 2, we get that

0 ≤ ud(t) − uk+1(t) ≤ ud(t) − uk(t) − ρµ
(

ud(t) − uk(t)
)2

. (5.53)

Similarly, when uk(t) ≥ ud(t) at t ∈ I, we find that

uk+1(t) − ud(t) = uk(t) + ρ
(

vd(t) − vk(t)
)

− ud(t),

≤ uk(t) − ud(t) − ρµ
(

uk(t) − ud(t)
)2

, (5.54)

and also by Lemma 2, we obtain

0 ≥ ud(t) − uk+1(t) ≥ ud(t) − uk(t) + ρµ
(

ud(t) − uk(t)
)2

. (5.55)

Then, by Eqs. (5.53) and (5.55), and using the infinity norm of a function, we find that

‖ud(·) − uk+1(·)‖∞ ≤ ‖ud(·) − uk(·)‖∞ − ρµ‖ud(·) − uk(·)‖2
∞. (5.56)

Multiplying both sides of Eq. (5.56) by 2η2 to convert to the output error and considering

the bounds, we get

∥

∥vd(·) − vk+1(·)
∥

∥

∞
≤

(

1 − ρµ‖vd(·) − v0(·)‖∞
)∥

∥vd(·) − vk(·)
∥

∥

∞
≤

(

1 − ρµ‖vd(·) − vk(·)‖∞
)∥

∥vd(·) − vk(·)
∥

∥

∞
≤

(

1 − ρµε
)∥

∥vd(·) − vk(·)
∥

∥

∞
. (5.57)

Case 2: when ε/(2η2) > ξ ⇒ ‖ud(·) − uk(·)‖∞ > ξ. Suppose uk(t) ≤ ud(t) at t ∈ I, then

by ILCA Eq. (5.4) and the results of Lemma 1 we find that

ud(t) − uk+1(t) = ud(t) − uk(t) − ρ
(

vd(t) − vk(t)
)

,

≤ ud(t) − uk(t) − ρµ
[

2ξ
(

ud(t) − uk(t)
)

− ξ2
]

,

≤ ud(t) − uk(t) − ρµξ2. (5.58)
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Furthermore, by Lemma 2, we get that (refer to Fig. 5.10)

0 ≤ ud(t) − uk+1(t) ≤ ud(t) − uk(t) − ρµξ2. (5.59)

Similarly, when uk(t) ≥ ud(t) at t ∈ I, we find that

uk+1(t) − ud(t) = uk(t) + ρ
(

vd(t) − vk(t)
)

− ud(t),

≤ uk(t) − ud(t) − ρµ
[

2ξ
(

uk(t) − ud(t)
)

− ξ2
]

, (5.60)

and also by Lemma 2, we obtain

0 ≥ ud(t) − uk+1(t) ≥ ud(t) − uk(t) + ρµξ2. (5.61)

Then, by Eqs. (5.59) and (5.61), and using the infinity norm of a function, we find that

∥

∥ud(·) − uk+1(·)
∥

∥

∞
≤

∥

∥ud(·) − uk(·)
∥

∥

∞
− ρµξ2. (5.62)

Again, multiplying the above by 2η2, we find that

∥

∥vd(·) − vk+1(·)
∥

∥

∞
≤

∥

∥vd(·) − vk(·)
∥

∥

∞
− 2η2ρµξ2. (5.63)

In summary, the rate of the convergence when the tracking error is sufficiently small is

linear, i.e., when ε/(2η2) ≤ ξ. Otherwise, the tracking error decreases by the constant

amount 2η2ρµξ2 from one iteration to the next. This completes the proof.

Remark 2 We note that the bounds on the rate of convergence can be tightened if a priori

information about the Preisach weighting surface is available. We will show this in the

experimental implementation of the ILC scheme in Chapter 6.

Suppose a precision ε > 0 is specified for the output tracking error. Furthermore,

assume that ε/(2η2) ≤ ξ, where ξ > 0 is defined in the Preisach Assumption 1. In this case,

the number of iterations required to achieve the precision ε is determined as follows. By

Eq. (5.56), we find that

‖vd(·) − vk+1(·)‖∞ ≤
(

1 − ρuε
)

‖vd(·) − vk(·)‖∞, (5.64)
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which implies that

‖vd(·) − vk(·)‖∞ ≤ γk‖vd(·) − v0(·)‖∞. (5.65)

where γ = (1 − ρµε) and 0 < ρ ≤ 1/η2. Solving for the required number of iterations K in

terms of ε using Eq. (5.65), we obtain

k > K =
ln(K1ε)

ln
(

1 − K2ε
) , (5.66)

where

K1 =
1

‖vd(·) − v0(·)‖∞
, (5.67)

K2 = ρµ. (5.68)

5.3.5 Convergence for General Trajectories

Now we discuss the extension of Theorem 1 for general desired trajectories, those with

more than one monotonic partition. First, we say that Λ(v) = {ti}0≤i≤N , t0 = t0 <

t1 < · · · < tN = T , is a monotonicity partition for v : I → R, if v is monotone on all

subintervals [ti, ti+1] ⊂ I (e.g., see reference [18], Definition 2.2.2). Second, by Nm(Λ(v))

we denote the number of monotonicity intervals in the monotonicity partition of v. Now,

given vd ∈ C0(I), let Nm(vd) ∈ N be the number of monotonic partitions of the desired

trajectory vd. We assume that the number of monotonic partitions for a desired trajectory

is finite, i.e., Nm(Λ(v)) < ∞. In practice, this is a reasonable assumption for trajectories

employed in piezo-based operations, such as AFM-based imaging [2]. Then the algorithm

for showing convergence of a general desired trajectory is to apply the results of Theorem

1 to each section individually until convergence of all sections is achieved. The algorithm is

explained by the following example:

First, consider an example desired trajectory vd ∈ C0(I) (dashed line) defined over

the interval I = [0, T ] as illustrated in Fig. 5.12(a1). Without loss of generality (and for

simplicity), we pick an example where there are two monotonic partitions (Nm(Λ(vd)) = 2)

as shown in the figure, e.g., the monotonic partitions are [0, t1] ∪ [t1, T ] ⊂ I. Also, the
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desired input ud that achieves the example vd is depicted in Fig. 5.12(a2)3. In Fig. 5.12(a1),

the desired trajectory vd is sandwiched between two curves that represent the bounds on

the tracking precision, ε > 0. The tracking precision in the output ε is chosen by the

designer. Now, the objective is to apply the ILCA Eq. (5.4) until the output error is within

the bound ε for all t ∈ [t0, T ]. The following algorithm applies to the example, but it can

also be generalized to trajectories that have more monotonic sections than this example.

We assume that all the conditions of Theorem 1 hold. A flow chart of the algorithm is

shown in Fig. 5.11 and the steps are as follows:

1. First, the desired trajectory vd ∈ C0(I) is partitioned into monotonic sets where in this

specific example we have Λ(vd) = {0, t1, T} (see Fig. 5.12(a1)). This partition gives us

Nm(Λ(vd)) = 2, where the time interval partitions are as follows: [0, t1] ∪ [t1, T ] ⊂ I.

Therefore, over I1 = [0, t1], the partition v1 = {vd(t)|t ∈ I1 = [0, t1]} is monotonic.

In the example, v1 ∈ C0
m+(I1), i.e., nondecreasing on I1. Likewise, we have find that

v2 = {vd(t)|t ∈ I2 = [t1, T ]} ∈ C0
m−(I2), i.e., nonincreasing on I2.

2. Next, we initialize the system as described in Assumption 2. A detailed example of

this procedure can be found in the next chapter.

3. Then, starting with the first monotonic partition, the ILCA Eq. (5.4) with ρ chosen

sufficiently small (see the requirements of Theorem 1), is applied to the hysteretic

system.

4. Afterwards, for each iteration, we check the precision of the tracking error with respect

to the desired precision ε > 0 (see Fig. 5.12(b1)). If the precision is within the desired

value, then we proceed to the next step, otherwise, we go back to Step 2 and continue

the iteration process.

3We note that the desired input ud shown in Fig. 5.12(a2) is only an example. The actual ud may differ
from the example shown, however, by Preisach Property 4, over each monotonic partition of vd, the input
ud is also monotonic and of the same sign in monotonicity as vd
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Figure 5.11: The ILC implementation flow chart.
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û

u
d

t0

v

t
T

v̂

v
d

ε

(a1)

(b1)

(c1)

(d1)

(e1)

(a2)

(b2)

(c2)

(d2)

(e2)

t2

v
N1

v
d(t  ) =2 (t  )2

2

Figure 5.12: The ILC method applied to track a trajectory with two monotonic partitions.
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5. Now, once a desired tracking precision is achieved, (see Fig. 5.12(b2)), we let N1 ∈ N

be the number of iterations that achieves the desired precision ε over the interval I1.

At this point we check whether precision tracking of all N∗ monotonic partitions have

been achieved. If it is completed, then the algorithm stops, otherwise, we continue to

the next step.

6. In this step, the input is held constant until the time instant t2 when vN1
(t2) = vd(t2)

(see Fig. 5.12(c1) and (c2)). This procedure is necessary to set up the initial conditions

for applying the ILCA Eq. (5.4) to the next monotonic section defined over [t2, T ].

Therefore, the input uN1
(t) for t ∈ [0, t2] is combined with the input used in the

initialization phase prior to time t0 (see Assumption 2). Finally, the ILCA Eq. (5.4)

is applied to the next (or second section in this example) until the tracking precision

ε is achieved (see Fig. 5.12(d1) and (d2)). Let N2 ∈ N be the number of iterations

that achieves the desired precision ε over the interval [t2, T ]. Figures 5.12(e1) and

(e2) show the resulting performance of the input û = uN1
∪ uN2

when it is applied

to the hysteretic system. Now, for trajectories with more monotonic partitions, Steps

2 through 6 are repeated until the prescribed tracking precision is achieved for the

entire trajectory.

Proposition 2 Consider a hysteretic system of the form v(t) = H[u](t). Let vd(t) ∈ C0(I)

be given with the number of monotonicity intervals equal to Nm(vd) = N∗ > 1 and for a

given ε > 0 tracking precision and using the above algorithm, the total number of iterations

K∗ ∈ N, such that ‖vd(·) − vk(·)‖∞ < ε whenever k > K∗ is

K∗ = N∗ ×K, (5.69)

where K is given by Eq. (5.66).

Proof

Following the steps of the propose algorithm presented above, for a given vd ∈ C0(I), we

form the monotonicity partition Λ(vd) of the desired trajectory vd, yielding Nm(Λ(vd)) =

N∗. Given ε > 0, we apply Theorem 1 to the first monotonic section of vd, and iterate
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until the required tracking precision is achieve, where the number of iterations is given by

Eq. (5.66). Following the above algorithm, after the first K number of iterations, the input

uK(t) and output vK(t) for t ∈ [t0, t1] are chosen as the desired input-output pair for the first

monotonic section. At time t1, the memory curve achieved by the input uK(t) for t ∈ [t0, t1]

is chosen as the initial memory curve L0 for the next monotonic section of vd, i.e., vd(t) for

t ∈ [t1, t2]. Then, Theorem 1 is applied again, and we iterate another K number of iterations

to achieve ε precision. This process is repeated N∗-times and we find that K∗ = N∗×K.

5.4 Summary

In this chapter, we proved convergence of a proposed iterative learning control algorithm for

hysteretic systems. The proof was based on the properties of the Presiach hysteresis model

on a branch. In particular, it was shown that when the input-output behavior belongs on a

single branch, then convergence for monotonic trajectories can be achieved because direction

information is known between the input and output. However, the effect of branching makes

it difficult to show convergence for the general case. But by using the results along a branch,

an algorithm was proposed to achieve convergence for general trajectories which involves

partitioning the trajectory into monotonic sections. Finally, we quantified the number of

iterations required to achieve a prescribed tracking precision in terms of the parameters of

the Preisach model. Next, the ILCA is applied to an experimental piezo positioning system

to demonstrate its effectiveness.
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Chapter 6

ITERATIVE LEARNING CONTROL OF HYSTERESIS:

EXPERIMENTAL RESULTS AND DISCUSSION

This chapter discusses the implementation of the iterative learning control method pre-

sented in the previous chapter. Experiments were performed on a commercial atomic force

microscope system to demonstrate the efficacy of the method. The first section describes

the experimental AFM system, followed by a discussion of the modeling of the hysteresis

behavior. The modeling process involves isolating the system from the effect of creep using

the inversion-based feedforward approach [2]. Afterwards, the parameters of the model are

used to implement the ILCA Eq. (5.4). Finally, the remaining sections of this chapter: (i)

show experimental results that demonstrate nano-precision positioning and (ii) characterize

the performance of the ILC approach.

6.1 Experimental Atomic Force Microscope System

6.1.1 Overview

The experimental atomic force microscope system is a Burleigh Metris-2000NC AFM de-

signed to image samples [67, 64, 65]. The AFM uses a sectored piezoelectric-tube (lead

zirconate-titanate, PZT) positioner1 to move a probe tip relative to a sample surface in the

x-, y- and z-axis as shown in Fig. 2.5. The maximum input voltage that can be applied to

the piezo-amplifier, which drives the piezo positioner, is limited to ±5 V . Over the input

range of ±5 V , the piezo positioner has lateral, x- and y-axis, scan ranges of 95 µm and

120 µm, respectively. According to Burleigh’s specifications [180], the position resolution is

better than 50 angstroms in the lateral directions and 10 angstroms in the vertical (z) di-

1Long range Metris-3070 sample scanning module [180]
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rection2. In the experiments, we apply the proposed ILC method to the lateral axes (x and

y); however, the method can also be applied to the z-axis if movement leads to significant

hysteresis effect.

A custom optical displacement sensor was designed to measure the lateral displacement

of the piezo positioner. The level of the line noise in the sensor measurement was observed

to be ±10 mV , which corresponds to a sensor resolution of ±140 nm in the x-axis and

±190 nm in the y-axis. Being optical in nature, the sensor’s bandwidth, in addition to

the dynamic response of its signal conditioning circuitry, exceeds that of the mechanical

bandwidth of the system (discussed in the next section). Therefore, the sensor adequately

senses the dynamic behavior of the piezo positioner. A detailed discussion of the optical

sensor, including a circuit diagram, can be found in Appendix D.

For controlling the commercial AFM system, an IBM personal computer (PC) based

on an Intel 266 Mhz processor is equipped with a National Instruments Lab-PC+ data

acquisition card (DAC). The DAC is used to generate command signals to control the piezo

positioner. Also, the DAC measures the deflection of the AFM cantilever during operation,

as well as records the output of the optical sensors (see Appendix D). A C-program3 was

written for the DAC for open-loop and closed-loop control. The PC-based data acquisition

system can achieve 35 kHz closed-loop control (see Appendix E for sample C-programs).

For all imaging experiments, the AFM was operated in constant-height noncontact mode.

In this mode, a reference force, based on the manufacturer’s specifications [180], was chosen

for imaging. During the tip-to-sample approach phase, a z-axis PID-feedback controller was

engaged to initially bring the tip within close proximity to the sample surface. Once the

cantilever achieved the reference force, the PID gains (proportional, derivative and integral)

were reduced. The gains were reduced in such a way that during scanning, the PID controller

was essentially inactive and did not vary the command signal in the z-axis. In effect, as

the probe tip was scanned across sample surface, the deflection of the cantilever and probe

tip corresponds to the topology of the sample surface, i.e., the cantilever’s deflection signal

2Based on the assumption that the command signal is properly isolated from electrical noise and me-
chanical vibrations.

3Borland Turbo C MSDOS compiler, Version 3.0. See Appendix E for sample programs.
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measured by an optical sensor was proportional to the relative distance between the probe

tip and sample surface. By combining the information from the cantilever’s deflection and

the lateral (x- and y-axis) position of the probe tip over the sample surface, an image of

the sample surface can be constructed.

The raster pattern used for imaging is illustrated in Figs. 2.6 and 6.11, where the tra-

jectory in the x-axis is a triangle wave, and a ramp signal for the y-axis trajectory. The

effective scan area for the first type is rectangular. As the AFM-probe tip is scanned over

the surface of a sample, the deflection of the tip is measured at a fixed time instant and

this information is used to construct an image of the topology of the sample surface. Ad-

ditionally, a spiral pattern was used and the results are discussed in Appendix D. In this

chapter, we focus on the results of the standard (rectangular) raster pattern.

6.1.2 Frequency Response

The frequency response of the piezo positioner in the x- and y-axis are shown in Fig. 6.1.

The frequency response was measured using a dynamic signal analyzer (DSA)4. A sinusoidal

input voltage, u, generated by the DSA was applied to the piezo positioner. The resulting

lateral displacement the measured by the optical sensor was fed back to the DSA to construct

the frequency response curves shown in Fig. 6.1. The frequency response was measured over

a displacement range of 2.00 µm, which is less than 2% of the maximum output range, where

hysteresis is negligible. In addition, the frequency response was measured over a relatively

high frequency range (1 Hz - 7 kHz) so that the effect of creep is small. We note that

the dominating resonant peak for the x- and y-axis are 445 Hz and 454 Hz, respectively.

Additionally, the bandwidth of the piezo positioner (frequency at which the magnitude

response crosses the value of −3 dB below the DC-gain) in the x- and y-axis are 541 Hz

and 558 Hz, respectively.

4Stanford Research Systems Model SR785
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Figure 6.1: Frequency response curves for the piezo-scanner used in the Burleigh AFM-
imaging system: (a) and (b) magnitude and phase versus frequency along the x-axis, re-
spectively; (c) and (d) magnitude and phase versus frequency along the y-axis, respectively.
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6.1.3 Hysteresis Effect

The measured hysteresis effect in the piezo positioner is significant. For example, in Figs. 6.2

and 6.3, the measured output hysteresis is 13.42% and 13.01% of the total displacement

range for the x- and y-axis, respectively (cf. Figs. 6.2(c) and 6.3(c)).

6.2 Hysteresis Model Identification

An approximate model of hysteresis for an experimental system can be obtained from mea-

sured output data. Several approaches are available to determine the Preisach weighting

surface µ(·, ·), e.g., see the review in reference [125] and also in reference [114]. One approach

is to generate a collection of first-order descending (FOD) curves, compile the curves into a

FOD surface and then differentiate the FOD surface to find the Preisach weighting surface

µ(·, ·) [143, 139]. This approach is described in more detail in Appendix C and it was ap-

plied to find the Preisach weighting surface for an experimental piezo positioner. Although

the method is straightforward, the differentiation process can amplify noise in the measured

output data, causing significant error. An alternative, and more favorable technique to find

µ, involves discretizing the Preisach plane and using a least-squares technique to determine

the values of µ at a finite number of locations in the Preisach plane P [181, 125]. In the

following, we discuss an example to illustrate this method.

6.2.1 The Approach

Consider the Preisach plane P as shown in Fig. 6.4(a). The objective is to find an approx-

imation to the weighting function µ(·, ·) over P based on measured output data. To do

this, we recall the output equation for the Preisach model presented earlier in Chapter 4

(Eqs. (4.3) and (4.8)):

v(t) =

∫∫

α≥β

µ(α, β)Rα,β [u](t)dαdβ,

=

∫∫

P+(t)

µ(α, β)dαdβ −
∫∫

P−(t)

µ(α, β)dαdβ, (6.1)
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where the sets P+(t) and P−(t) (defined in Eqs. (4.6) and (4.7)) represent the regions of

the Preisach plane where relays have switched to the +1 and −1 states, respectively. Now

suppose for example that P was discretized as shown in Fig. 6.4(a), where the α and β axes

have been partitioned into four equal intervals (i.e., n = 4). The centers of each square

and triangle are labeled numerically as shown, and they are referred to as nodes. In this

example, we have 10 nodes. Also, we note that such a coarse mesh serves to illustrate

the approach and finer meshes can be used to give more accurate results. With such a

discretized Preisach plane, we observe, based on the work of Banks et al.[182], that the

output Eq. (6.1) can be approximated by

v(t) ≈
N

∑

i=1

R∗µrAr, (6.2)

where Ai represents the area associated with the ith node, µi is the average value of the

weighting surface over area Ai and R∗ takes on value +1 or −1 depending on the state of

the node, or relay at the node. In our example, N = 10 (see Fig. 6.4(a)). Let w denote the

width of each square and triangle and let the coordinate of the ith node be (βi, αi) and for

our example, i = 1, 2, · · · , N = 10. Now consider the following algorithm for switching the

relays between the +1 and −1 states:

Minus-to-Plus Rule (−1 → +1): For a monotonically increasing input, the ith

node switches from −1 to +1 if αi ≤ u(t) and if the distance from u(t) to the αi is

less than w/2, i.e., |u(t) − αi| < w/2.

Plus-to-Minus Rule (+1 → −1): For a monotonically decreasing input, the ith

node switches from +1 to −1 if the distance between u(t) to βi is less than w/2,

i.e., βi − u(t) ≤ w/2. An example MATLAB code that implements this algorithm in

documented in Appendix E.

Suppose at time t0, an input was applied in such a way that all the relays in the P were

switched to the −1 state, i.e., negative saturation state. Next, assume the input u(t) from

time t0 increases monotonically from the negative saturation point to the maximum input

value at ū, through a series of steps. At time t0, taking into account the switching rules
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defined above, we find that for our example, node 1 switches to the +1 while all the relays

associated with the remaining 9 nodes are at the −1 state, for example see Fig. 6.4(b),

where the solid triangle indicates that the node is in the +1 state. Using the approximation

Eq. (6.2), we can write:

v(t0) ≈
10

∑

r=i

R∗µiAi,

≈ µ1A1 − µ2A2 − µ3A3 − · · · − µ10A10, (6.3)

where R∗
1 = +1 and R∗

j = −1 for j = 2, 3, · · · , 10. Now suppose at the next time instant

t1 > t0, the input increases monotonically switching nodes 1, 2 and 3 to +1 state (see

Fig. 6.4(c)). Then we can write the following approximation for the output:

v(t1) ≈ µ1A1 + µ2A2 + µ3A3 − µ4A4 · · · − µ10A10. (6.4)

Proceeding two more times until the input reaches the (maximum) value ū (see Figs. 6.4(d)

and (e)), we find the following expressions for the output:

v(t2) ≈ µ1A1 + · · · + µ6A6 − µ7A7 − · · · − µ10A10, (6.5)

v(t3) ≈ µ1A1 + µ2A2 + · · · + µ10A10. (6.6)

After the input peaks at ū, we decrease the input monotonically and consider again

the switching algorithm, then we obtain the following approximations for the outputs (see

Figs. 6.4(f) - (i)):

v(t4) ≈ µ1A1 + · · · + µ6A6 − µ7A7 + µ8A8 + · · · + µ10A10, (6.7)

v(t5) ≈ µ1A1 + µ2A2 + µ3A3 − µ4A4 + µ5A5 + µ6A6

−µ7A7 + µ8A8 + µ9A9 + µ10A10, (6.8)

v(t6) ≈ µ1A1 − µ2A2 + µ3A3 − µ4A4 − µ5A5 + µ6A6

−µ7A7 − µ8A8 − µ9A9 + µ10A10. (6.9)

After this first cycle, the state of the relays are reset to the negative saturation state and

then the input is applied once again to switch the relays as indicated in Figs. 6.4(j)-(m),
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which give us the following set of equations:

v(t7) ≈ µ1A1 + µ2A2 + µ3A3 − µ4A4 + µ5A5 + µ6A6

−µ7A7 − µ8A8 − µ9A9 − µ10A10, (6.10)

v(t8) ≈ µ1A1 − µ2A2 + µ3A3 − µ4A4 − µ5A5 + µ6A6

−µ7A7 − µ8A8 − µ9A9 − µ10A10, (6.11)

v(t9) ≈ µ1A1 − µ2A2 − µ3A3 − µ4A4 − µ5A5 − µ6A6

−µ7A7 − µ8A8 − µ9A9 − µ10A10. (6.12)

Finally, we recognize that Eqs. (6.3)-(6.12) can be written in the following matrix form:
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v
]

≈
[

φ
] [

µA
]

. (6.13)

In Eq. (6.13), the vector [v] is the measured output sampled at appropriate time in-

stances, and the matrix [φ] consists of either +1’s or −1’s. If a finer mesh is desired, then

following the above example, an appropriate input profile can be generated such that the

matrix [φ] is full rank. It is easy to see that the vector [µA] can be solved numerically

using the least-square method to find the approximate Preisach weighting function µ. For

a review of other techniques to solve for the unknown parameters [µA] in Eq. (6.13), see

references [125, 183].
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6.2.2 Creep Compensation

In practice, an input profile similar to the type used to obtain FOD curves discussed in

Appendix C can be used generate the output vector [v] and the matrix [φ] in Eq. (6.13). This

is the approach taken to find the weighting function µ. However, before obtaining output

data to find an approximation of the weighting function using the above approach, both the

effects of creep and vibration were isolated from the hysteresis behavior. Otherwise, these

effects can affect the measure output data, leading to an inaccurate model of the hysteresis

behavior. (A more detailed discussion of creep compensation is discussed in Appendix C.)

To avoid the effect of induced structural vibrations, the frequency of the control input was

kept small, i.e., the scanning frequency for all experiments were less than or equal to 1 Hz,

which is significantly smaller than the dominating resonant peak of the piezo positioner

at 445 Hz and 454 Hz for the x- and y-axis, respectively. Because of creep, the measured

output after each input cycle slowly drifts over a period of 50 seconds as shown in Figs. 6.5(a)

and (c).

The time-dependent drift in the measured displacement versus time curves no longer

satisfies the rate-independent assumption of the Preisach hysteresis model [143], i.e., when

the input returns to the negative saturation point (u = u) after each cycle, the Preisach

model assumes the output returns to the same value, but as experiments indicate Figs. 6.5(a)

and (c), the output slowly drifts.

Creep was taken into account by modeling the behavior and using the model to find

an input to minimize the effect. Creep in the x- and y-axis of the piezo positioner was

characterized by a second-order model consisting of series connection of dampers (ci) and

springs (ki) [184]:

x(s)

u(s)
=

1

k0
+

n
∑

i=1

1

sci + ki
, (6.14)

where x(s) is the displacement of the piezo positioner (in the Laplace domain) and u(s)

is the applied input voltage. In the above equation, k0 models the elastic behavior at low

frequencies and the creep behavior is captured by selecting an appropriate model order (n),

i.e., number of damper-spring elements. The parameters (k0, ki, and ci) of the model in
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114

Eq. (6.14) were determined by curve fitting the step response of the piezo positioner [185].

For a detailed discussion of this approach, see Appendix C. The creep models for the x-

and y-axis are (units V/V ):

Gc,x(s) ,
x(s)

u(s)
=

0.4376s2 + 9.898s + 7.494

s2 + 20.85s + 14.65
, (6.15)

Gc,y(s) ,
y(s)

u(s)
=

0.5428s2 + 11.67s + 15.77

s2 + 20.7s + 26.09
, (6.16)

Figure 6.6 shows a comparison of the measured step response with creep and the linear

models for both the x and y-axis. The second order model provides a good fit of the creep

behavior.

Using the inversion-based approach [2] and the creep models, the resulting compensated

output versus time responses are displayed in Figs. 6.5(b) and (d). The results show that

creep is eliminated when compared to the uncompensated cases: Figs. 6.5(a) and (c).
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6.2.3 Model Validation

Using the creep compensation technique and the resulting input-output data shown in

Figs. 6.5(b) and (d), models of the Preisach weighting surface for in the x- and y-axis were

found (see example MATLAB code in Appendix E). Initially, a relatively coarse mesh was

used to test the algorithm. The mesh contained 26 × 26 nodes and the result for the x-

axis hysteresis model is shown in Fig. 6.7(a). In Fig. 6.7(a), it appears that the effect of

the µ weighting was concentrated along the diagonal line α = β. At first, it was unclear

whether the sharp ridge of the µ surface was caused by artifacts associated with noise in the

measured output data. To validate the model, the following approximation was considered

to test the result of the least-squares algorithm.

Based on the least-squares solution, we assumed that the Preisach weighting surface was

heavily concentrated along the diagonal line α = β and the concentration spanned over

the distance d as shown in Fig. 6.7(b). Therefore, the values of µ in the shaded region

was assumed to be significantly larger than the values of the µ surface over the remaining

portion of the Preisach plane. Then, the objective was to generate two major hysteresis

loops by sweeping the entire Preisach plane P, one ascending branch and one descending

branch, and then using the resulting branches to find an approximation of the µ surface

and compare it to the least-squares result. If the result of this approximated model agreed

with the least-squares result, then the least-squares results were accurate.

The approximated model based on the assumption of the behavior of µ as illustrated in

Fig. 6.7(b) is presented as follows. First, the Preisach plane was put in a state of negative

saturation, i.e., all the relays were switched to the −1 state. Then, a monotonic input u was

applied until it reached the maximum input value ū. During the application of this input,

we measured the output change. Plotting the measure output versus input, we obtained

an ascending major hysteresis loop as illustrated in Fig. 6.8. Afterwards, we applied a

monotonically decreasing input until it reached the value u, and again measured the output

and the resulting descending major hysteresis loop is also shown in Fig. 6.8.

By assuming the Preisach weighting function is mostly concentrated along the diagonal

with width d as shown in Fig. 6.7(b), we can approximate µ by curve fitting the ascending
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and descending major hysteresis loops. In this case, we assume that over the region Ω1,

µ(α, β) = µmax < ∞ for all (α, β) ∈ Ω1 (see Fig. 6.7(c)). Additionally, we assume that

over the region Ω2, µ(α, β) = µ2 << µmax for all (α, β) ∈ Ω2. This assumption is based

on the result of the preliminary least-squares solution shown in Fig. 6.7(a). Then, we note

that from Proposition 1, the change in output along the major hysteresis loop as the input

sweeps the entire Preisach plane P is given by

∆v = 2

∫∫

P

µ(α, β)dαdβ. (6.17)

From Fig. 6.7(c), the above equation becomes

∆v = 2
[

∫∫

Ω1

µ(α, β)dαdβ +

∫∫

Ω2

µ(α, β)dαdβ
]

, (6.18)

where the regions Ω1 and Ω2 are shown in Fig. 6.7(c). Based on our approximation for the
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weighting function and some simple geometry, we can write:

∆v = 2
[

∫∫

Ω1

µ(α, β)dαdβ +

∫∫

Ω2

µ(α, β)dαdβ
]

,

≈ 2µ2

∫∫

Ω1

dαdβ + 2µmax

∫∫

Ω2

dαdβ,

≈ 2µ2
1

2
∆u2 + 2

√
2dµmax∆u,

≈ µ2∆u2 + 2
√

2dµmax∆u, (6.19)

where d << ∆u. The approximation Eq. (6.19) implies that the output is a combination of

a quadratic term in ∆u and a linear term in ∆u. Then, by curve fitting the ascending and

descending major hysteresis loops in Fig. 6.8, we can find the values µmax, µ2 and d.

First, by fitting over the entire range of ∆u, we find (averaged between ascending and

descending branches)

∆v = 0.0122∆u2 + 0.5429∆u, (6.20)

which gives us

µ2 = 0.0122,

d =
0.5429

2
√

2µmax

.

Second, to find µmax, we fit the curves over a relatively small range ∆u because along the

diagonal, µmax has the greatest affect, hence we find

∆v ≈ µmax∆u2

∆v = 2.1508∆u2 + 0.3532∆u. (6.21)

which implies that µmax = 2.1508 and d ≈ 90 mv. Finally, the approximated values of the

µ surface where compared with the least-squares results and they were found to be in close

agreement; therefore, the least-squares approach accurately models the hysteresis behavior

and the approach was used to determine the Preisach weighting surface µ.

After the least-squares model was check with the approximate model and determined

to yield an accurate weighting surface µ, the least-squares approach was applied to identify
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the hysteresis model for the x- and y-axis. The mesh was chosen as 51 × 51 and the

results for the weighting surfaces are shown in Figs. 6.9(a) and (b). The 51× 51 model was

further discretized and the measured output was compared with the model output. It was

found that a mesh of 300 × 300 was sufficient to model the hysteresis behavior. Figures

6.9(c), (d) and (e) compares the error in model for the standard least-squares approach, the

approximate model approach and a hybrid model where the solutions from the least-squares

was integrated with the approximate model, respectively. In the figure, the error levels off

after 300 × 300 nodes. The models with 300 × 300 mesh grid were used in the experiments

and a comparison of the measured output and model output are shown in Fig. 6.10 for the

x- and y-axis. The parameters of the Preisach hysteresis models for the x- and y-axis are

shown in Table 6.1.
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Table 6.1: Preisach model parameters.

x-axis y-axis

µmax 2.63 2.80

µmin 0.01 0.009

µ 1.95 1.72

d (mv) 90 90

(ū − u) (V ) 10 10

µmax in Ω2 0.043 0.059
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6.3 Tracking of Monotonic Trajectories

The remaining sections of this chapter discusses the implementation of the ILC approach

to compensate for hysteresis in an experimental atomic force microscope system. First,

the ILC approach is applied to track a monotonic trajectory (demonstrating Theorem 1).

Then, experimental results for an example trajectory with more than one monotonic sec-

tion is described. The example trajectory is the scanning pattern used for AFM imaging.

Afterwards, the ILC method is applied in AFM imaging of a calibration sample. We begin

with a discussion of tracking monotonic trajectories and the steps, which follows the flow

chart in Fig. 5.11, are as follows:

Step 1: Determine the Constant ρ The ILCA (see the block diagram in Fig. 5.3) to

compensate for hysteresis takes the form given by Eq. (5.4), where ρ is a constant, and vk(t)

and uk(t) are the output and input for the kth operating trial, respectively. In Chapter 5

it was shown that ILCA Eq. (5.4) converges if the desired trajectory vd is continuous and

monotonic over the finite time interval I = [t0, T ]. Convergence of ILCA Eq. (5.4) requires

a monotonic desired trajectory to overcome the difficulties associated with multivalued or

branching behaviors typical of hysteresis [18]. Therefore, for a given monotonic desired

trajectory vd(t) defined on I, there exists a constant ρ such that ILCA Eq. (5.4) converges;

the value of ρ is chosen as

0 < ρ ≤ 1

2µmax(ū − u)
, (6.22)

where µmax is the maximum value of the Preisach weighting surface over P and (ū − u)

is the range of the applied input voltage. Based on the parameters of the Preisach model

presented in Table 6.1, we find that for the x- and y-axis:

ρx ≤ 1

2µx,max(ū − u)
= 0.019, (6.23)

ρy ≤ 1

2µy,max(ū − u)
= 0.018. (6.24)

Therefore, by picking the constant ρ based on the constraints given by Eqs. (6.23) and

(6.24), ILCA Eq. (5.4) is guaranteed to converge. Furthermore, suppose that a tracking
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precision of ε = 15 mv is required ( 210 nm in the x-axis and 283 nm in the y-axis). Using

the results of Chapter 5 (Eq. (5.66)) and the parameters of the Preisach model from Table

6.1, the total number of iterations required for x- and y-axis are:

Kx >
ln(K1ε)

ln(1 − K2ε)
= 1.63 × 105, (6.25)

Ky >
ln(K1ε)

ln(1 − K2ε)
= 1.79 × 105, (6.26)

where ‖xd(·) − x0(·)‖∞ = 6.80 V (90 µm), ‖yd(·) − y0(·)‖∞ = 6.36 V (120 µm) and µ is

replaced with µmin since it is nonzero over P. We note, however, that the required number

of iterations in Eqs. (6.25) and (6.26) and the maximum allowable constant ρ determined

above are extremely conservative, as with any theoretical work. Thus, the values given by

Eqs. (6.25) and (6.26) serve as a guideline in design and the actual rate of convergence may

be much faster than the theoretical estimates provided above.

In practice, if a priori knowledge about the Preisach weighting function is known, for

example the shape of the weighting surface, then a tighter bound on the constant ρ and the

number of iterations required to achieve a prescribed tracking precision can be computed.

For example, based on the nature of the Preisach weighting surfaces shown in Figs. 6.9(a)

and (b), by geometry (see Fig. 6.7(c)), the upper bound in Lemma 1 can be rewritten as

follows:

H[u2] −H[u1] ≤ 2

∫∫

Ω1

µ(α, β)dαdβ + 2

∫∫

Ω2

µ(α, β)dαdβ,

≤ 2
√

2dµmax

(

ū − u
)

+ 2µmax,2

(

ū − u
)2

,

≤
[

2
√

2dµmax + 2µmax,2

(

ū − u
)

]

(

ū − u
)

, (6.27)

where µmax,2 is the maximum value of µ in the region Ω2 (see Fig. 6.7(b)). Equation 6.27

implies that the constant ρ is limited by

ρ ≤ 1

2µmax,2

(

ū − u
)

+ 2
√

2dµmax

. (6.28)

Substituting in the model parameters from Table 6.1 into Eq. (6.28), we find that

ρx ≤ 0.65, (6.29)

ρy ≤ 0.53. (6.30)
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For the experiments, we picked ρx = 0.25 and ρy = 0.25, which satisfy the constraints given

above. Furthermore, a tighter bound on the number of iterations required to achieve a

tracking precision of 15 mv (case 1: when δuk ≤ 255 mv) is given by:

Kx =
ln(K1ε)

ln(1 − K2ε)
= 819 (6.31)

Ky =
ln(K1ε)

ln(1 − K2ε)
= 942 (6.32)

where ‖xd(·) − x0(·)‖∞ = 6.13 V , ‖yd(·) − y0(·)‖∞ = 6.68 V . As we will see, the new

estimates given by Eqs. (6.31) and (6.32) provide a more reasonable estimate, but they are

also still conservative.

Step 2: Select Desired Trajectory The desired trajectory of interest was derived

from an AFM imaging task. In AFM imaging, the scan trajectories for the x and y-axis

are shown in Fig. 6.11. To demonstrate tracking of a monotonic trajectory, we pick the

ascending path of the triangle wave, which is half of one period of the scan path shown

Fig. 6.11. The scanning frequency in the x-axis is 1 Hz. We demonstrate ILC tracking in

the x-axis and y-axis, where the desired trajectory in the y-axis is shown in Fig. 6.11. The

range of the desired trajectories are ±45 µm.

Step 3: Setting Initial Condition Requirement During the iteration process, the

system is brought to the same initial starting conditions for each trial k at time t0, i.e.,

L(t0) is the same for all k. This process requires applying an input to put the system

in the negative saturation state, followed by applying an input to bring the system to a

desired starting condition compatible with the input/output objectives at time t0, e.g.,

xk(t0) = xd(t0) and uk(t0) = ud(t0) for all k.

Step 4: Apply the ILCA We applied the ILCA Eq. (5.4) with ρ = 0.25 to in the x-

and y-axis. In the first experiment, the results of iteratively tracking the monotonically

increasing trajectory in the x-axis with amplitude 45µm is presented in Fig. 6.12. Likewise,

the results for the y-axis are presented in Fig. 6.13. In both experiments, the initial input

u0(t) for t ∈ [0.3, 0.8] s was chosen as a constant value compatible with the initial conditions
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Figure 6.11: The imaging trajectory

at t0 = 0.3 s. Also, over the time interval [0, 0.3]s, the ILC method was not used to the track

the trajectory. The input for this section was taken as the quarter of a triangle wave and

the resulting output was taken as is, without applying the ILC method. Typically, over the

time interval [0, 0.3] s, the AFM probe tip is moved into the starting position for imaging

(at the upper left-hand corner of the imaging area, see Fig. 2.6) and there is no need to

accurately track the initialization since no data is collected from the cantilever during this

process.

In Figs. 6.12(c) and (d), after 50 iterations, the maximum error emax and the root-

mean-square error erms as a percentage of the total displacement range (90 µm), defined

as,

emax =
max |ek(·)|

90 µm
× 100%, erms =

√

1
T

∫ T

t0
|ek(t)|2dt

90 µm
× 100%,

reduces to 0.25% and 0.11%, respectively. Also, Fig. 6.12(c) illustrates that emax decays

rapidly as the iteration number k increases. In terms of precision, emax = 0.25% corresponds
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to ±14.6 mv sensor output or ±204 nm. In comparison, the amplitude of the measured

sensor noise is ±10 mV ; therefore, the iterative approach achieves approximately the pre-

cision of the sensor noise level. These results suggest that high-precision positioning can

be achieved using the proposed ILC approach. Additionally, we note that with higher res-

olution sensors, higher precision can be achieved. The results of this experiment illustrate

that the ILC approach reduces the tracking error beyond existing feedback and model-based

feedforward techniques, e.g., the results shown in Chapter 3.

Likewise, the results of the ILC method applied to the y-axis are shown in Fig. 6.13.

The desired trajectory is a ramp signal that sweeps from +45 µm to −45 µm over a period

of 220 s. Like the results in the x-axis, the tracking error decays rapidly with the iteration

number and after 50 iterations, the maximum error as a percentage of the total displacement

range is 0.82%, e.g., see Fig. 6.13(c).

6.4 Tracking of General Trajectories

In this experiment, we demonstrate precision tracking of a 1 Hz triangle wave with a

45 µm amplitude. The trajectory is one cycle of the x-axis AFM scanning trajectory shown

in Fig. 6.11, which contains two monotonic partitions. Since the scanning process repeats,

finding the input to track only one period of the entire trajectory is sufficient for the imaging

process. After the input in the x-axis is found using the ILC approach, the input was then

applied repetitively during the scanning process in the x-axis. The input for the y-axis

movement was described in the previous section and it was used in conjunction with the

x-axis input during AFM imaging. The imaging results are presented in the next section.

We note that the following steps are in condensed form relative to the flow chart in Fig. 5.11

and the discussion at the end of Chapter 5.

The algorithm for applying the ILC method to a trajectory with more than one mono-

tonic section was presented in Chapter 5, Section 5.3.5. We will follow the algorithm to

demonstrate the ILC approach for tracking one period of the x-axis scan path shown in

Fig. 6.11.
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Step 1: Partition the desired trajectory into monotonic sections The ILC process

is executed by partitioning the desired trajectory into two monotonic sections over the time

intervals T1 = [0.3, 0.8] s and T2 = [0.8, 1.3] s, as shown in Fig. 6.14(a). For each section,

ILCA Eq. (5.4), with ρ = 0.25, was applied until convergence to a desired precision was

achieved.

Step 2: Apply ILC to the first section To illustrate the approach, we picked a tracking

precision of ±15 mv, roughly 1.5-times the ambient noise level. The initial input over the

interval T1 = [0.3, 0.8] s was a ramp input such that the maximum output was 45 µm.

Without compensation, the effect of hysteresis causes the output to distort as it reaches the

maximum output of 45 µm. Over the interval T1, 40 iterations brought the piezo response to

within the ±15 mv precision (Figs. 6.15(a) and (b)). We note that for the x-axis, the initial

input u0 was chosen as the desired trajectory scaled by a constant (DC gain) value. The

initial output error was 0.46 V (6.43 µm). Recomputing the number of iterations required

to achieve the tracking precision of ±15 mv (±210 nm), we get

Kx =
ln(K1ε)

ln(1 − K2ε)
= 320 (6.33)

where ‖xd(·) − x0(·)‖∞ = 0.46 V . Compared to the results of Fig. 6.15(a), the estimate is

still conservative, but reasonably close to the actual performance of the piezo.

Step 3: Hold the input constant until the next section Then, after time t ≥ 0.8 s,

the input u40(t = 0.8 s) was held constant until time t2 when x40(t2) = xd(t2). This is

required to obtain the appropriate initial condition for repeating the ILC process for the

second monotonic section, defined over [t2, 1.3] ⊂ T2. Since the tracking error was within

the noise level, the time t2 was simply chosen as t2 = 0.8 s (see Fig. 6.16).

Step 4: Apply ILC to second section and repeat if necessary Finally, the ILCA

was applied to the second monotonic section defined over [0.8, 1.3] s and the iteration ran

for 40 trials (Figs. 6.16(a)-(c)). The tracking error as a function of the iteration number

is shown in Fig. 6.17. Afterwards, the process can be repeated for additional monotonic

sections, but since our example consists of only two sections, we stopped. Summing the
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number of iterations for each section, we found the total to be 80 iterations to achieve a

tolerance of ±15 mv. We emphasize that in this experiment, the ±15 mv precision was

chosen as an illustrative example. Higher precision tracking can be achieved by increasing

the number of iterations for each monotonic section. Additionally, with better sensors,

higher precision can be achieved.

A comparison of the uncompensated response and the ILC response is shown in Fig. 6.18.

Without compensation, there is significant tracking error, however, the ILC approach re-

duces the error down to the noise level of the sensor measurement. Figure 6.18(c) shows the

hysteresis curve plotted for the uncompensated case. In the next section, the inputs found

using this approach is applied in AFM imaging.

6.5 AFM Imaging Results

Using the inputs found in the previous sections, they were applied to AFM imaging. The

objective was to image a calibration sample and to compare the difference between the un-

compensated approach and the inputs found using the ILCA Eq. (5.4). A calibration sample

consisting of parallel markings with a 16 µm pitch was imaged using the Burleigh AFM sys-

tem. The input for the uncompensated case was the desired triangular trajectory scaled by

a constant such that the maximum output response was 45 µm. The output response for

the uncompensated case are shown in Figs. 6.18(a) for the x-axis and in Fig. 6.13(a) for the

y-axis. The ILC input is shown in Fig. 6.16(c). In the figure, only one period of the input

is shown, however, during imaging, the input was repeated 160-times to cover the desired

area of 90 µm × 90 µm (see Fig. 6.11).

The imaging results are shown in Fig. 6.19. Figure 6.19(a) is an image without ILC and

it shows the effect of hysteresis; the features are significantly distorted due to hysteresis.

Because of hysteresis, the parallel features appear curved and of varying widths. By ap-

plying the input found using the ILC approach, the distortions can be corrected as shown

in Fig. 6.19(b). Reference lines, which are superimposed on the image, show the improve-

ment in precision achieved using ILC. We note that using the ILC approach, the resulting

AFM images show the true surface topology, without the distortion due to hysteresis effect.
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By demonstrating the effectiveness of ILC for imaging, we emphasize that this approach

has potential application in AFM-based nanomanufacturing for creating features without

distortion due to hysteresis effect.

6.6 Summary

In summary, this chapter discussed the implementation of the ILC approach, which involves

modeling the hysteresis behavior to determine the iteration gain ρ. Based on the experi-

ments, we conclude that the proposed ILC algorithm can achieve high-precision positioning,

down to the ambient noise level of the sensor measurement. Additionally, when compared to

existing feedback and model-based feedforward approaches, the approach provides further

error reduction (cf. Chapter 3). We have demonstrated that an ILC approach can be used

in AFM-based applications, such as imaging and it also has potential use in the design of

SPM-based tools for nanotechnologies.
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Chapter 7

CONCLUSIONS

In conclusion, this dissertation studied high-precision control of piezo-based systems, in

particular, atomic force microscopes. First, a decoupled feedback and feedforward control

approach was investigated to compensate for creep, hysteresis and vibration. Results of

this method showed that an order of magnitude improvement can be achieved compared to

the uncompensated case. Second, this thesis solved an ILC problem for hysteretic systems.

A proof of convergence of an iterative learning control algorithm to achieve high-precision

positioning was presented and the analysis was based on the Preisach hysteresis model. Be-

cause of branching effects in hysteretic systems, convergence of a proposed ILC scheme was

proved by exploiting the properties of the Preisach model along a branch and convergence

was shown for monotonic trajectories. Afterwards, an algorithm was proposed to demon-

strate convergence for general trajectories. Finally, the proposed ILC method was applied

to an experimental AFM system to demonstrate its effectiveness. The results show that the

ILC method reduces the error to the noise level of the sensor measurement (0.25% of the

displacement range) and with higher resolution sensors, higher precision can be achieved.

Moreover, the success of this approach shows that the proposed ILC control scheme can be

used to design emerging high-precision SPM-based nanotechnologies, such as AFM-based

high-density data storage devices and tools for nanofabrication and nanosurgery.
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Chapter 8

FUTURE WORK

This chapter discusses the extension of the ILC method developed in this dissertation to

include vibration and creep effects. Additionally, some potential applications of the control

method are presented.

8.1 ILC for Creep, Hysteresis and Vibration Compensation

In Chapter 4, the piezo positioner was modeled as a cascade of two subsystems: a rate-

independent nonlinear element that captures the hysteresis behavior and a linear time-

invariant dynamic block that represents creep and vibration effects (see Fig. 8.1(a)). In

this representation, the rate-independent nonlinear element maps the input u to v and

then v becomes the input to the LTI block with output y. More specifically, the complete

piezo-based positioner model is given by

y(t) = G(v(t)); v(t) = H[u](t), (8.1)

where H represents the rate-independent hysteresis behavior, G is a linear mapping from v

to y and u is the input to the system. This thesis solved an ILC problem for Preisach-type

hysteretic systems H. However, the ILC problem for creep, hysteresis and vibration remains

to be solved.

One possible avenue to explore involves the use of the system inversion technique [14,

16, 123] and the ILC method developed in this dissertation to compensate for creep, hys-

teresis and vibration. First, given a desired trajectory yd, the system inversion technique

can be used to find the signal vd that achieves yd (see Fig. 8.1(b)). The justification for

using the inversion-based approach is the LTI dynamics of the a piezo system can be easily

and accurately modeled. Then, with the desired trajectory vd computed, the ILC method

developed in this dissertation can be used to find the input ud. Of interest, of course, is
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quantifying the rate of convergence and performance of the composite system when system

inversion and the ILC is applied.

Another avenue worth exploring is combining the hysteresis model and LTI system,

and then pose the ILC problem for the composite system. The challenge, however, is the

complexity of the model, which consists of the nonlinear-nonlocal memory behaviors of the

Preisach model and dyanmics effects. The solution will require rigorous analysis to prove

convergence of an ILC approach for such systems.

8.2 Potential Applications of ILC

Some of the potential applications for the ILC method developed in this dissertation include

high-precision positioning in microrobotics [186, 187], for example. Complex micro-systems

consisting of many parts cannot be easily produced using traditional batch fabricated tech-

nqiues. Therefore, high-precision microrobotics are needed for the assembly of small and

complex micro-systems that range in size from a few hundred microns to several hundred

nanometers, and even smaller. The ILC method can be applied for precise control of ma-

nipulators, or fabrication tools, to assemble/create parts and objects.

Likewise, piezo-based surgical tools have been developed for high-precision surgery [55].
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Since hysteresis can lead to significant positioning error, precise control of the surgical tool

is required in nanosurgery involving the use of piezo-based surgical tools [188]. The ILC

method can be used to compensate for hysteresis and to achieve precise control of the tool

for surgery applications.

Additionally, the ILC approach can be used to achieve high-precision control of piezos

in the following list of applications:

• Optics: auto-focus systems, image stabilization

– Wide range of motion, rapid positioning

• Metrology: nanometrology

– Accurate, distortion-free measurements

• Nanomechanics: vibration cancellation, micro pumps, tool adjustment, needle value

actuation

– Rapid motion, precise control

• Sensors: Pressure sensors, force sensors, ultrasound detection, stress measurements

– Accurate positioning, distortion-free imaging
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Appendix A

CONTINUOUS- AND DISCRETE-TIME STATE-SPACE MODELING

This chapter1 introduces techniques for modeling continuous- and discrete-time systems

using the state-space approach. The state-space and transfer functions models obtained

using the techniques described in the following were used in the modeling of the piezoactu-

ator system described in Chapter 3. In particular, we include a discussion of determining

experimentally the state-space model for a piezoactuator system by studying its measured

frequency response.

A.1 Introduction

The state-space approach is a technique that uses a set of first order differential equations

to represent the behavior of a system in the time-domain. The state-space approach has an

advantage over frequency-domain approaches such as the transfer-function approach—it can

be used to model linear, nonlinear, time-varying, and multivariable systems, whereas the

transfer-function approach is suited to linear time-invariant (LTI) systems ([185], Chapter

3). In addition, models expressed in first order state-space form in the time-domain can be

readily solved by a digital computer or microprocessor, which makes this approach quite

useful for the design and control of modern mechatronic systems. Furthermore, there is a

wide variety of available computer software, such as MATLAB [190], that take advantage of

the state-space form for analyzing and solving design problems. Therefore, the state-space

approach can be used to investigate the behavior of and facilitate in the design of both

continuous- and discrete-time systems, the fundamentals of which will be the focus of this

chapter.

In the following, we begin with an example: the modeling of a piezoceramic actuator in

1This chapter is published in The CRC Mechatronics Handbook, edited by Robert Bishop, 2002 [189].
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Section A.2.1 and use the example throughout the chapter. The concept of a system state

is introduced in Section A.2. We explain the state-space equation for linear systems and

present its solution in Section A.2.3. The linearization of nonlinear systems is the topic of

Section A.2.4. The relationships between time- and frequency-domain models are discussed

in Section A.3. In Section A.4, we present a procedure for obtaining a state-space model

using experimental frequency-domain (frequency-response) data. Section A.5 is devoted to

discrete-time state-space modeling and we conclude with a summary in Section A.6. Useful

MATLAB commands are also included as footnotes.

A.2 States and the State-space

A.2.1 An Example Piezoceramic Actuator

We begin by modeling a piezoceramic actuator, which is an example mechatronic (elec-

tromechanical) system. When a voltage is applied to a piezoceramic material, its dimension

changes. This change in dimension can be used to precisely position an object or tool (such

as a sensor), thus making piezoceramics suitable actuators for a wide variety of applications.

For example, due to their ability to achieve positioning with sub-nanometer level precision,

piezoceramic actuators have become an ideal positioning actuator for emerging nanotech-

nologies. In particular, a piezo-tube actuator is used in scanning probe microscopes (SPMs,

see Fig. A.1) to precisely position a probe tip for high-precision nanofabrication, surface

modification, and the acquisition of images of atoms [2]. The probe tip can be positioned

in the three coordinate axes (x, y, and z), with each motion controlled by an independent

voltage source (Vx, Vy, and Vz). Scanning of the probe is performed parallel to the sample

surface along the x- and y-axis; the z-axis movement allows motion of the probe perpendicu-

lar to the sample surface. An accurate mathematical model of the dynamics of a piezo-tube

actuator is required for the analysis and design of SPM systems. A designer can exploit

the known information of the system from its model to improve or optimize a design for

building faster and more reliable SPMs. For example, an approach that has been success-

fully implemented is the inversion-based control method, which finds the inputs required to

achieve exact tracking by inverting the system model [2]. This technique works best when
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Figure A.1: The main components of a scanning probe microscope (SPM) used for surface
analysis, which includes the piezo-tube actuator, the probe tip, and the sample. The con-
figuration of the probe tip and sample with respect to the coordinate axes (x, y, and z) are
shown in the magnified view.

the dynamics of the system are well characterized and understood. In general, the analysis

and design of control systems also require a system model. Thus, for analysis and design, it

is crucial to obtain an accurate mathematical model that describes the behavior of a system.

Modeling of the example piezo-tube system is considered in the following.

Simple Model of a Piezo-Tube Actuator

We will model the dynamics of the piezo-tube actuator along the z-axis where the input

Vz(t) is the applied voltage and the output of the system is the displacement z(t) of the

probe tip. We begin the modeling by simplifying the system as an isolated mass, an ideal

spring, and a damper as shown in Fig. A.2(a). The entire mass of the piezo-tube is lumped

into one mass element m, the internal elastic behavior of the piezo-tube is modeled as a

spring, and the structural damping in the piezo-tube is modeled as a damper or a viscous

friction element (such models are referred to as lumped models [191]). A mathematical

relationship between the applied voltage Vz(t) and the displacement of the probe tip z(t)

can be obtained using physical laws. Using Newton’s second law (the sum of all external
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Figure A.2: (a) A simple lumped model of the piezo-tube actuator modeled along the z-axis
consisting of a mass, a spring, and a damper. The positive z-direction is indicated by the
arrow and the “+” sign. (b) The forces acting on the mass (free body diagram).

forces Fi acting on a body is equal the product of its mass m and acceleration z̈(t)) we can

write the equation of motion as,
∑

i

Fi = mz̈(t) (A.1)

As shown in Fig. A.2(b) (the free body diagram), there are three forces acting on the

piezo-tube. First, the force exerted by the spring is assumed to be proportional to the

displacement of the probe tip, i.e.,

Fs(t) = −kz(t) (A.2)

where k is the spring constant with SI units [N/m]. Second, the damping force is considered

to be proportional to the velocity of the probe tip ż(t), i.e.,

Fd(t) = −cż(t) (A.3)

where c is the viscous friction or damping coefficient with SI units [N ·s/m]. Third, induced

strain ǫ in the piezoceramic material is proportional to the applied voltage Vz(t) [31], and

by Hooke’s Law, the induced stress σ is proportional to the induced strain ǫ. Hence, the
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induced force Fp(t) (stress σ times the cross sectional area) is proportional to the applied

voltage Vz(t), i.e.,

Fp(t) = bVz(t) (A.4)

where b is a constant with SI units [N/V ]. Rewriting Eq. (A.1) in terms of the three forces,

the equation of motion becomes,

3
∑

i=1

Fi = mz̈(t)

Fs(t) + Fd(t) + Fp(t) = mz̈(t)

−kz(t) − cż(t) + bVz(t) = mz̈(t)

⇒ mz̈(t) + cż(t) + kz(t) = bVz(t) (A.5)

which is called the mass-spring-damper model. Note that the relationship between the input

voltage Vz(t) and the displacement z(t) of the probe tip (i.e., the model of the dynamics) is

a second order differential equation. The response of the probe tip (displacement of mass m)

to an applied voltage Vz(t) can be obtained in the frequency-domain by using the Laplace

transform approach ([120], Chapter 2, Section 5); however, the state-space approach can

be used to obtain the solution directly in the time-domain. In the remaining sections, the

state-space approach to modeling is presented and the mass-spring-damper model of the

piezo-tube actuator will be used as an example.

A.2.2 States of a System

We begin by introducing the concept of a state, which is the basis for the state-space

approach. In general, a state can be defined as the following:

Definition 6 (The State of a System) The state x(t0) of a dynamic system at time t0

is a set of variables that, together with the input u(t), for t ≥ 0, determines the behavior of

the system for all t ≥ t0 ([192], Chapter 2, Section 1.1).

Fundamental to this definition is the notion that the state summarizes the current con-

figuration of a system. Therefore, the memory of a dynamical system is preserved in the

state variables at the current time t0 (called initial condition), and the future behavior of
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the system is determined by the initial condition x(t0) and the applied input u, for t ≥ 0.

The state of a system can be written as the set

x(t) =























x1(t)

x2(t)

x3(t)
...

xn(t)























(A.6)

where n is the number of states2. Any set of variables that satisfy the above definition can

be a valid state, hence the state is not unique ([193], Chapter 2, Section 2).

Example The state variables required to describe the mass-spring-damper system can be

chosen as the position z(t) and velocity ż(t) of the mass. We can write the state vector as

x(t) =





x1(t)

x2(t)



 =





z(t)

ż(t)



 (A.7)

where the number of states is two (n = 2). If the position z(t) and velocity ż(t) of the mass

is known at time t0, along with the applied voltage Vz(t) defined for t ≥ t0, then the future

behavior of the system (i.e., the state x(t)) can be determined by solving the differential

equation (A.5).

A.2.3 The Linear State-Space Equation and its Solution

For a linear system, the evolution of the states of a system over time can be described by a

set of linear first order differential equations of the form:

ẋ1(t) = dx1(t)
dt

= a11(t)x1(t) + · · · + a1n(t)xn(t) + b11(t)u1(t) + · · · b1p(t)up(t)

ẋ2(t) = dx2(t)
dt

= a21(t)x1(t) + · · · + a2n(t)xn(t) + b21(t)u1(t) + · · · b2p(t)up(t)
...

ẋn(t) = dxn(t)
dt

= an1(t)x1(t) + · · · + ann(t)xn(t) + bn1(t)u1(t) + · · · bnp(t)up(t)

(A.8)

2For a discussion on the minimal set of states required to describe a system (minimal realization),
see ([192], Chapter 7).
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where n is the number of states (or the order of the system) and p is the number of inputs.

Defining the input vector as

u(t) =























u1(t)

u2(t)

u3(t)
...

up(t)























(A.9)

and the state vector x(t) as defined in Eq. (A.6), the set of first order differential equations

given by (A.8) can be rewritten in compact matrix form as ([193], Chapter 2, section 2),

ẋ(t) =

















a11(t) a12(t) · · · a1n(t)

a21(t) a22(t) · · · a2n(t)
...

...
. . .

...

an1(t) an2(t) · · · ann(t)

















x(t) +

















b11(t) b12(t) · · · b1p(t)

b21(t) b22(t) · · · b2p(t)
...

...
. . .

...

bn1(t) bn2(t) · · · bnp(t)

















u(t)

, A(t)x(t) + B(t)u(t) (A.10)

where A(t) is an n × n matrix and B(t) is an n × p matrix. For a system defined with q

outputs y(t), which are assumed to be a linear combination of the state x(t) and input u(t),

we can write the output equation as

y(t) =

















c11(t) c12(t) · · · c1n(t)

c21(t) c22(t) · · · c2n(t)
...

...
. . .

...

cq1(t) cq2(t) · · · cqn(t)

















x(t) +

















d11(t) d12(t) · · · d1p(t)

d21(t) d22(t) · · · d2p(t)
...

...
. . .

...

dq1(t) dq2(t) · · · dqp(t)

















u(t)

, C(t)x(t) + D(t)u(t) (A.11)

where C(t) is an q × n matrix and D(t) is an q × p matrix. In general, the matrices A(t),

B(t), C(t), and D(t) are time varying; however, in this chapter, we will only consider the

time-invariant case where A, B, C, and D are constant matrices, thus

ẋ(t) = Ax(t) + Bu(t) (A.12)

y(t) = Cx(t) + Du(t) (A.13)
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Equations (A.12) and (A.13) are called the linear time-invariant (LTI) state and output

equations, respectively3.

The response of the system to an applied input can be quantified by the evolution of

the system state x(t) and the output y(t). The state-space equation (A.12) is a set of first

order differential equations in matrix form, which can be solved in time for a given initial

condition x(t0) as ([193], Chapter 3)

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ (A.14)

Note that solution (A.14) is the sum of two terms: the first term is the effect of initial

condition x(t0) and the second is the effect of the applied input u(t) between t0 ≤ τ ≤ t4.

Using the output Eq. (A.13) and the state solution given by Eq. (A.14), the output y(t)

becomes

y(t) = CeA(t−t0)x(t0) +

∫ t

t0

CeA(t−τ)Bu(τ)dτ + Du(t) (A.15)

The system response y(t) to an applied input u(t) is characterized by the system matrices

(A,B,C,D). For example, the output y(t) will be bounded for any bounded input if the

system is stable and the system is stable if the real parts of all the eigenvalues of A are less

than zero (strictly negative) ([193], Chapter 4, Section 4)5.

Example For the mass-spring-damper example system, the state-space equation can be

found by differentiating the states x(t) defined in Eq. (A.7) and using the equation of motion

(A.5) to obtain

ẋ1(t) = ż(t) = x2(t)

ẋ2(t) = z̈(t) = − k

m
z(t) − c

m
ż(t) +

b

m
Vz(t) = − k

m
x1(t) −

c

m
x2(t) +

b

m
u(t) (A.16)

3For a detailed discussion of the solution of linear time-varying equations, see [192], Chapter 4, section 5.

4The MATLAB command lsim simulates the time response of LTI models to arbitrary inputs.

5The MATLAB command eig(A) returns the eigenvalues of the system matrix A.
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We choose the position of the mass z(t) to be the output of the system, and write the

state-space and output equation in the form given by Eqs. (A.12) and (A.13) as

ẋ(t) =





0 1

−(k/m) −(c/m)



x(t) +





0

(b/m)



u(t), (A.17)

y(t) =
[

1 0
]

x(t). (A.18)

A.2.4 Linearization of Nonlinear Systems

A general form of the state-space equation (for nonlinear systems) is

ẋ(t) = g(x(t),u(t)), (A.19)

y(t) = h(x(t),u(t)), (A.20)

where g(·) and h(·) can be nonlinear functions. The behavior of nonlinear systems is beyond

the scope of this chapter; however, a detailed discussion can be found in [194]. The behavior

of a nonlinear system can be approximated by a linear model in a neighborhood of a equi-

librium point. Such linearizations can simplify the analysis and design of nonlinear systems

because the tools developed for linear systems can be applied under certain conditions [194].

Let x0 and u0 be the equilibrium state and input, respectively, such that ([194], Chapter 1)

g(x0,u0) = 0, (A.21)

h(x0,u0) = y0. (A.22)

Consider small perturbations in the equilibrium point x(t) = x0 + x̄(t), the input u(t) =

u0 + ū(t), and the output y(t) = y0 + ȳ(t). If the perturbation x̄(t) is small for all t, then

we obtain the following by expanding (A.19) in Taylor series (neglecting higher order terms

of x̄(t) and ū(t)),

ẋ0 + ˙̄x(t) = g(x0 + x̄(t),u0 + ū(t)),

˙̄x(t) = g(x0,u0) +
∂g

∂x
x̄(t) +

∂g

∂u
+ · · · . (A.23)

Recognizing that g(x0,u0) = 0, we obtain

˙̄x = Āx̄(t) + B̄ū(t), (A.24)
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where

Ā =
∂g

∂x

∣

∣

∣

∣

x0,u0

and B̄ =
∂g

∂u

∣

∣

∣

∣

x0,u0

. (A.25)

The matrices Ā and B̄ are the Jacobians evaluated at x0 and u0. Equation (A.24) is a

linear state equation and is valid for small perturbations about x0 and u0. A similar result

can be obtained for the change ȳ(t) in the output from the equilibrium value y0 as

˙̄y = C̄x̄(t) + D̄ū(t), (A.26)

where

C̄ =
∂h

∂x

∣

∣

∣

∣

x0,u0

and D̄ =
∂h

∂u

∣

∣

∣

∣

x0,u0

. (A.27)

A.3 Relationship Between State Equations and Transfer-functions

A.3.1 State-space to Transfer-function

The input-to-output relationship of a dynamic system in the frequency-domain is repre-

sented by a transfer-function, which can be obtained by taking the Laplace transform of

Eq. (A.12) and Eq. (A.13) with zero initial conditions as follows ([193], Chapter 3, Section

5)

sX(s) = AX(s) + BU(s), (A.28)

Y (s) = CX(s) + DU(s), (A.29)

where s is the Laplace variable. Solving Eq. (A.28) for X(s) and substituting into Eq. (A.29),

the ratio of the output Y (s) to input U(s) for a single-input single-output system (SISO)

can be found as,

G(s) =
Y (s)

U(s)
= C(sI − A)−1B + D

=
N(s)

D(s)
, (A.30)

where I is an n × n identity matrix. In Eq. (A.30), N(s) and D(s) are referred to as the

numerator and denominator polynomial of G(s), respectively6.

6The MATLAB command ss2tf can be used to convert a state-space realization to a transfer function
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Analogous to the state-space equation, the boundedness of the output response y(t) to a

bounded input u(t) is characterized by the roots of the denominator polynomial D(s), i.e.,

the values of s for which D(s) = 0. In particular, the output y(t) will be bounded for any

bounded input, i.e., system is stable, if the real parts of all the roots of D(s) are less than

zero (strictly negative)7. Alternatively, a convenient method to determine stability without

having to find the roots of D(s) explicitly is the Routh-Hurwitz Stability Criterion ([120],

Chapter 6).

Example With the state-space description of the mass-spring-damper system defined in

equations Eq. (A.17) and Eq. (A.18), the transfer-function realization using Eq. (A.30)

becomes

G(s) =
Y (s)

U(s)
=

[

1 0
]



s





1 0

0 1



 −





0 1

−(k/m) −(c/m)









−1 



0

b/m



 + [0]

=
b/m

s2 + (c/m)s + k/m
. (A.31)

The input to the system is the applied voltage Vz(t) and the output is the displacement of

the mass z(t).

A.3.2 Frequency-response Using Transfer-functions

Consider a linear single-input single-output (SISO) stable system with transfer-function

description G(s). When the system G(s) is excited by a sinusoidal input of the form

u(t) = P sin(ωt) (A.32)

with amplitude P and frequency ω, the output response (after the transients decay) will

also be a sinusoid of the form

y(t) = MP sin(ωt + φ) (A.33)

with the same frequency ω and a phase shift φ ([120], Chapter 8). The output amplitude

is the input amplitude scaled by M , the magnitude gain. The magnitude gain M is found

7The MATLAB command roots(den) can be used to find the roots of den, where den is the coefficients of
D(s)
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by taking the magnitude of G(s) evaluated at s = jω, i.e.,

M = |G(s)|s=jω. (A.34)

Usually, the magnitude gain M is expressed in units of Decibels (dB), i.e., M [dB] =

20 log M . The phase shift φ is the angle of G(s) evaluated at s = jω, i.e.,

φ = ∠G(s)|s=jω, (A.35)

with units of degrees. The plot of the magnitude gain M and the phase shift φ versus the

frequency ω gives a graphical representation of the frequency-response (Bode plots) of the

system8. These plots can be obtained experimentally by measuring the magnitude gain and

phase shift between the input and output response of the system over a range of frequen-

cies. Additionally, the system’s transfer-function can be obtained from an experimental

frequency-response data by using curve-fitting software. In Section A.4, we present this

approach to determine a model for a system using experimental frequency-response data.

A.3.3 Transfer-function to State-space

In Section A.3.1, a transfer-function model was obtained for a system in state-space form.

In the following, an approach for realizing a state-space model from a transfer-function G(s)

is presented. For a realizable transfer function G(s) of a SISO system of the form

G(s) =
b0s

n + b1s
n−1 + · · · + bn

sn + a1sn−1 + · · · + an
, (A.36)

the controllable canonical state-space form written in terms of the coefficients of G(s) is

ẋ(t) =























−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0























x(t) +























1

0

0
...

0























u(t), (A.37)

y(t) =
[

(b1 − a1b0) (b2 − a2b0) · · · (bn − anb0)
]

x(t) + [b0]u(t), (A.38)

8The MATLAB command bode plots the magnitude gain and phase shift versus frequency for a linear system



174

where number of states n is equal to the highest power of the denominator of G(s). The

smallest possible dimension for realizing a system, referred to as the minimum realization,

is an important factor to consider in analysis and design9. Models of minimum order

require less computational power in simulation and implementation compared to higher

order models. For information about other equivalent canonical state-space forms, refer to

([192], Chapter 4, Sections 3 and 4).

A.4 Experimental Modeling Using Frequency-response

An approach to modeling using experimental frequency-response data is presented in this

section. Using a dynamic signal analyzer (DSA), the frequency-response of the dynamics

along the x-axis for the piezo-tube actuator was measured10. A sinusoidal input voltage

Vx(t) with frequency varying between 10 Hz to 6 kHz was generated by a DSA and applied

to the scanning probe microscope (SPM) system as shown in Fig. A.3. Using an inductive

sensor, the displacement xp(t) of the piezo-tube along the x-axis was measured and fed

back to the DSA to compute the frequency-response (M and φ versus frequency ω plots).

Figure A.4 shows the Bode plots obtained by the DSA between the applied voltage Vx(t)

and the output of the inductive sensor y(t). An estimate of the system model from the

frequency-response data was then found with the MATLAB software (The MATLAB command

invfreqs gives real numerator and denominator coefficients of experimentally determined

frequency response data.). The transfer-function between the applied input voltage Vx(t)

and the output of the inductive sensor y(t) was found to be

G1(s) =
Y (s)

Vx(s)

=

5.544×105s4−7.528×109s3+1.476×1015s2

−4.571 × 1018s + 9.415 × 1023

s6+1.255×104s5+1.632×109s4

+1.855 × 1013s3 + 6.5 × 1017s2 + 6.25 × 1021s + 1.378 × 1025

(A.39)

with units of [V/V ]. We scaled Eq. (A.39) by the inductive sensor gain (30 Angstroms/V )

and the transfer-function between the applied voltage Vx(t) and the actual displacement of

9For a detailed discussion of minimal realizations for multi-input multi-output systems, see ([192], Chapter
7).

10Stanford Research Systems, model SRS785.
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Figure A.3: A schematic of the experimental setup used to determine the frequency-response
of the piezo-tube actuator. An inductive sensor measured the displacement of the actuator
along the x-axis and the frequency-response data from the DSA was used to estimate the
system model.

the piezo-tube xp(t) is given by

G2(s) =
Xp(s)

Vx(s)

=

1.663×107s4−2.258×1011s3+4.427×1016s2

−1.371 × 1020s + 2.2825 × 1025

s6+1.255×104s5+1.632×109s4

+1.855 × 1013s3 + 6.5 × 1017s2 + 6.25 × 1021s + 1.378 × 1025

(A.40)

with units of [Angstroms/V ].

A.4.1 Time Scaling of a Transfer-function Model

We present below an approach for rescaling time for G2(s) from seconds (s) to milliseconds

(ms). We briefly recall the time scaling property of the Laplace transform presented in

([185], Chapter 3, Section 1.4). Let F (s) be the Laplace transform of the function f(t), i.e.,

f(t)
L→ F (s), (A.41)
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where L denotes the Laplace transform operator. Now, consider a new time scale defined

as t̂ = at, where a is a constant. The Laplace transform of f(t̂) = f(at) is given by

f(t̂) = f(at)
L→ 1

|a|F
(s

a

)

= F̂ (s). (A.42)

Using relation (A.42), we can reduce the coefficients of G2(s) by changing the time units of

both the input signal u(t) and output signal y(t) as follows:

Ĝ(s) =
Ŷ (s)

Û(s)

=
Y (s/a)/|a|
U(s/a)/|a|

=
Y (s/a)

U(s/a)

= G
(s

a

)

. (A.43)

Therefore, to rescale time for G2(s) from seconds (s) to millisecond (ms), we choose t̂ =

at = 0.001t and the new rescaled transfer Ĝ2(s) becomes,

Ĝ2(s) = G2

(s

a

)∣

∣

∣

a=0.001

= G2(1000 · s)

Ĝ2(s) =
1.663s4 − 225.8s3 + 4.427 × 104s2 − 1.371 × 105s + 2.2825 × 107

s6+12.55×105s5+1.632×103s4+1.855×104s3

+6.5 × 105s2 + 6.25 × 106s + 1.378 × 107

(A.44)

Note that the time unit of the input and output signal of G2(s) are now in milliseconds. The

coefficients of the numerator and denominator polynomials are smaller and this form (Ĝ2(s))

is less prone to computational errors due to round off than the form G2(s), Eq. (A.40).
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A.4.2 The State-space Model

The state-space realization for Ĝ2(s) expressed in controllable canonical form (Eq. (A.37)

and (A.38)) is given by the following:

ẋ(t) =





























−12.55 −1.632 × 103 −1.855 × 104 −6.50 × 105 −6.25 × 106 −1.378 × 107

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0





























x(t)

+



































1

0

0

0

0

0

0



































u(t), (A.45)

y(t) =
[

0 16.63 −225.8 4.427 × 104 −1.371 × 105 2.825 × 107

]

x(t). (A.46)

The time unit for Eqs. (A.45) and (A.46) are milliseconds (ms). If the initial state at t0

is known, along with the applied voltage defined for t ≥ t0, then the future behavior of the

system, i.e., the state x(t) and output y(t), can be determined from Eqs. (A.45) and (A.46),

respectively.

A.5 Discrete-time State-space Modeling

A.5.1 Introduction

The study of discrete-time systems is important to the analysis and the design of modern

mechatronics systems where digital computers or small microprocessors are predominantly

used to control systems. Digital computers and microprocessors output or acquire infor-

mation at discrete time instants. For example, the input applied by a digital computer

to actuate the piezo-tube changes at discrete time instants. Similarly, the displacement

of the piezo-tube can only be measured at specified time instants using digital computers;
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Continuous-time
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x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
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]
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k

Discrete-time System

Sampler

Figure A.5: A block diagram of a discrete-time system showing signals in graphic form.
Note that u[k] = u(k · T ) and y[k] = y(k · T ), for k = 0, 1, 2, · · · , and the sampling period T
is assumed to be constant.

therefore in comparison to a continuous-time control system where the input signals change

continuously over time, the input of a discrete-time system changes once in a while. Such

discrete-time systems are studied next.

Consider a continuous-time system with continuous input u(t) and output y(t) as de-

scribed by Eqs. (A.12) and (A.13). Let a digital computer or microprocessor be used to

provide the input u[k] and measure the output y[k] as depicted in Fig. A.5 (such systems

with continuous and discrete signals are called sampled-data systems). The input u[k]

and output y[k] of this system are discrete with u[k] = u(k · T ) and y[k] = y(k · T ) for

k = 0, 1, 2, · · · , where T is the constant sampling period. The discrete input u[k] is applied

to the continuous system from a digital computer or microprocessor and is held constant

during the time interval T (zero-order hold). A sampler acquires the output of the contin-

uous system at each time instant T yielding the discrete output y[k]. The discrete system

is between the input u[k] and the output y[k] ([195], Chapter 1) (We do not discuss quan-

tizing and quantization error. See ([195], Chapter 1, Section 3) for details). The equivalent

discrete-time state-space representation of the continuous-time state-space model given by

Eqs. (A.12) and (A.13) is given by (the details of the formulation can be found in [195],

Chapter 5, Section 5.)

x[k + 1] = ADx[k] + BDu[k], (A.47)

y[k] = CDx[k] + DDu[k], (A.48)
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where

AD = eAT , BD =





T
∫

0

eAλdλ



 B, CD = C, and DD = D, (A.49)

and matrices CD and DD are not changed by the sampling (Given a continuous-time state

space model (A,B,C,D), the MATLAB command c2d, gives the discrete time equivalent for

a specified sampling period T .). This discrete model (Eqs. (A.47) and (A.48)) is the repre-

sentation of the sampled-data system shown in Fig. A.5.

A.5.2 Solutions to the Discrete-time State-space Equations

The solution to the discrete model (equations (47) and (48)) is given by

x[k] = Ak
Dx[0] +

k−1
∑

j=0

Ak−j−1
D BDu[j], (A.50)

y[k] = CAk
Dx[0] + C

k−1
∑

j=0

Ak−j−1
D BDu[j] + Du[k], (A.51)

respectively, for each sampling step k. Details of the formulation can be found in [195],

Chapter 5, Section 3. The state response x[k] to an applied input u[k] is characterized by

the system matrices (AD,BD,CD,DD). In particular, the output y[k] will be bounded for

any bounded input u[k] if the system is stable. A system in the form given by Eq. (A.47) is

stable if the magnitude of all the eigenvalues of AD are less than unity, i.e., the eigenvalues

lie within the unit circle center at the origin of the z-plane ([195], Chapter 5, Section 6).

A.5.3 The Z-transform and Relationship with the State-space

The input-to-output relationship in the frequency-domain for a discrete-time system is rep-

resented by a discrete transfer-function called the z-transform, written in terms of the vari-

able z ([185], Chapter 4). Analogous to the continuous-time case, the model of a dynamic

system in discrete transfer-function form can be useful in the design and control of systems

([185], Chapter 7). If the system model is available in discrete transfer-function form, then

a state-space realization can be found as follows. Given a discrete system described by the
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following z-transform G(z),

G(z) =
d0 + d1z

−1 + · · · + dnz−n

1 + c1z−1 + · · · + cnz−n
, (A.52)

the controllable canonical state-space realization for G(z) is

x[k + 1] =























−c1 −c2 · · · −cn−1 − cn

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0























x[k] +
[

1 0 0
... 0

]

u[k], (A.53)

y[k] =
[

(d1 − c1d0) (d2 − c2d0) · · · (dn − cnd0)
]

x[k] + [d0]u[k]. (A.54)

The number of states n is equivalent to the highest power of the denominator of G(z). For

information about other equivalent canonical state-space forms, refer to [195], Chapter 5,

Section 2.

Example Consider the continuous-time state-space model of the piezo-tube system de-

scribed by Eqs. (A.45) and (A.46). A digital computer with the sampling rate of 10 kHz

(T = 1.0 × 10−4) is used to provide the control input u[k] and measure its displacement

along the x-axis (output y[k]). The discrete-time state-space model with (AD, BD,CD, and

DD) given by Eq. (A.49) is
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x[k + 1] =




























0.999 −0.163 −1.85 −65.0 −624.5 −1377.1

9.99 × 10−5 0.999 −9.26 × 10−5 −3.25 × 10−3 −3.12 × 10−2 −6.69 × 10−2

5.00 × 10−9 1.00 × 10−4 1 −1.08 × 10−7 −1.04 × 10−6 −2.30 × 10−6

1.67 × 10−13 5.00 × 10−9 1.00 × 10−4 1 −2.60 × 10−11 −5.74 × 10−11

4.17 × 10−18 1.67 × 10−13 5.00 × 10−9 1.00 × 10−4 1 −1.15 × 10−15

8.33 × 10−23 4.17 × 10−18 1.67 × 10−13 5.00 × 10−9 1.00 × 10−4 1





























+





























9.99 × 10−5

4.99 × 10−9

1.67 × 10−13

4.17 × 10−18

8.33 × 10−23

1.39 × 10−27





























u[k], (A.55)

y[k] =
[

0 16.63 −225.8 4.427 × 104 − 1.375 2.825 × 107

]

x[k]. (A.56)

The realization given by Eqs. (A.55) and (A.56) was found using the MATLAB command

c2d.

A.6 Summary

We presented tools for modeling continuous- and discrete-time systems using the state-space

approach in this chapter. The state-space approach to modeling is a powerful technique

for the analysis and design of mechatronics and dynamic systems and can take advantage

of tools available in modern digital computers and microprocessors. The discussion of

the system states and the state-space was motivated by an example piezo-tube actuator

system. We considered the modeling of linear systems and briefly introduced a technique

for linearizing nonlinear systems. The frequency-response of a system and an approach to

modeling using experimental frequency-response data was presented. Relationships between

models expressed in the frequency- and time-domain for both continuous- and discrete-time

systems was discussed. For additional details about the concepts mentioned in this chapter

the reader is referred to the attached references.
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Appendix B

CIRCUIT DIAGRAMS

This chapter describes the electronic circuits used in the experiments discussed in Chap-

ters 3 and 6; it includes: circuit diagrams, relevant equations and component description.

B.1 The Design of Notch Filters for Improving the Gain Margin of High Qual-

ity Factor Systems

This section discusses the design of the notch filter D(s) used in Chapter 3 to improve the

gain margin of the piezo-positioning system (high quality factor system).

For systems with low gain margin, i.e., high quality factor Qf systems, large feedback

gains tends to destabilize the system. Furthermore, such low gains do not provide significant

improvement in tracking performance when feedback is used. In order to improve the

performance of such feedback controlled systems, a notch filter can designed that cascades

with the plant (as shown in Fig. B.1) to improve the gain margin, thereby, improving the

performance of the feedback controlled system. In Fig. B.1 C(s) is the feedback controller,

D(s) represents the notch filter to be designed, and G(s) is the plant transfer function. As

D(s) G(s)C(s)
+

_

Notch filter cascaded with plant

r y

Figure B.1: A feedback controlled system with a notch filter D(s) cascaded with plant G(s)
to improve gain margin. The feedback controller is represented by C(s).
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described in Chapter 3, the dynamics that make up the notch filter D(s) is chosen such

that its zeros cancel the effect of the sharp resonant peak of G(s) (i.e., dominating poles).

From Chapter 3, the equation of the notch filter D(s) is:

D(s) = kn
(s − 2πz1)(s − 2πz2)

(s − 2πp1)(s − 2πp2)
, kn

s2 + a1s + a0

s2 + b1s + b0
, (B.1)

where the zeros z1,2 were selected to coincided with the resonant poles (peaks) of G(s).

The poles of D(s) were added to improve the low frequency gain of the notch filter and to

attenuate high frequency noise. Previous work that use this technique to minimize the effect

of sharp resonant peaks can be found in [39, 38]. In choosing z1,2, one needs to pay close

attention to the possibility that exact pole/zero cancelation in practice is very challenging,

if not impossible. For example, small changes in the location of the resonant poles of

G(s) may be possible for a real system. Furthermore, realizing a notch filter such that its

zeros exactly cancel the effect of the resonant poles of G(s) is also very challenging, if not

impossible. Because of these uncertainties, though they may be small, the best choice for

z1,2 is to place them slightly before the nominal location of the resonant poles of G(s). By

doing so, any small variation in the poles of G(s) will not significantly alter the gain margin

of the composite system (i.e., gain margin of D(s)G(s)), and hence reduces the sensitivity

of the composite system’s gain margin to variations of the zeros of D(s) or resonant poles

of G(s). Consequently, this helps to reduce the possibility of large variations in the gain

margin jeopardizing the stability of the closed-loop system.

By placing the zeros of D(s) before, as opposed to behind, the frequency at which the

resonant peak occurs is further justified by the fact that the gain margin is determined at the

−180 degrees crossing in the phase versus frequency plot of G(s). Consider, for example,

a system G(s) with a sharp resonant peak located at some ω̂. The drop in phase in G(s)

around ω̂ happens rather quickly, say within some small neighborhood of ω̂. Additionally,

the drop in phase (for two-poles) is −180 degrees, and at the −180 degrees crossing, the

gain margin of G(s) is measured below (or above) the 0 dB mark (e.g., see [185]). Therefore,

it is important to ensure that any slight variations in the frequency of the resonant pole

does not significantly alter the gain margin of the composite system when D(s) is added.

One way to avoid this behavior is to place the zeros of D(s) slightly before the frequency
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Figure B.2: Circuit diagram for notch filter. The integrated circuit component LM324 is a
quad-operational amplifier chip.

where the resonant poles of G(s) occur. By doing so, the zeros of D(s) provides sufficient

phase increase before the drop in phase caused by the resonant poles of G(s), therefore

postponing the −180 degrees crossing of the composite-system’s phase higher frequencies,

therefore ensuring adequate gain margin and reducing gain margin sensitivity.

The second order notch filter D(s) given by Eq. (B.1) can be realized with analog op-amp

circuits and a circuit diagram is shown in Fig. B.2 (or detailed description found in [119],

pp. 394-399). The transfer function, in terms of resistor and capacitor component values, is

obtained as follows. In the circuit diagram (Fig. B.2), the notch filter consists of basically

an interconnection of five secondary building blocks—two summer, two integrator, and two

amplifier circuits. Starting from left to right, the output of the first summer circuit in the
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Laplace domain is

V1(s) =
R2(R + R3)Vin(s) + R1(R + R3)V2(s) − R(R1 + R2)V3(s)

R3(R1 + R2)
. (B.2)

The output of the two integrators are:

V2(s) = − 1

C1R8s
V1(s), (B.3)

V3(s) = − 1

C2R9s
V2(s). (B.4)

Combining Eqs. (B.2), (B.3), and (B.4), we get the following transfer functions for three of

the five secondary building blocks:

V1(s)

Vin(s)
=

R2(R + R3)

R3(R1 + R2)

−C2R9s

C1C2R8R9s2 + R1(R+R3)
R3(R1+R2)C2R9s + R

R3

, (B.5)

V2(s)

Vin(s)
=

R2(R + R3)

R3(R1 + R2)

C1C2R8R9s
2

C1C2R8R9s2 + R1(R+R3)
R3(R1+R2)C2R9s + R

R3

, (B.6)

V3(s)

Vin(s)
=

R2(R + R3)

R3(R1 + R2)

1

C1C2R8R9s2 + R1(R+R3)
R3(R1+R2)C2R9s + R

R3

. (B.7)

Finally, the two remaining amplifier circuits yield:

Vout(s) =
Rf

Ro
V4(s). (B.8)

Now, the output V4 is the weighted sum of V1, V2, and V3, and since Vout is related to V4

by Eq. (B.8), the transfer function from the input Vin to the output Vout is given by:

Vout(s)

Vin(s)
=

Rf

Ro

[(

R5(R6 + R7)

R7(R4 + R5)

)

V1(s)

Vin(s)
− R6

R7

V2(s)

Vin(s)
+

(

R4(R6 + R7)

R7(R4 + R5)

)

V3(s)

Vin(s)

]

,

=
Rf

Ro

[

R2R5(R + R3)(R6 + R7)

R3R7(R1 + R2)(R4 + R5)

] C1C2R8R9s
2 + (R4+R5)

(R6+R7)
R6R9C2

R5
s + R4

R5

C1C2R8R9s2 + R1(R+R3)
R3(R1+R2)

C2R9s + R
R3

,

=
Rf

Ro

[

R2R5(R + R3)(R6 + R7)

R3R7(R1 + R2)(R4 + R5)

] s2 + R6(R4+R5)
C1R5R8(R6+R7)s + R4

C1C2R5R8R9

s2 + R1(R+R3)
C1R3R8(R1+R2)s + R

C1C2R3R8R9

,

, K1K2
s2 + a1s + a0

s2 + b1s + b0
, (B.9)



187

where

a1 =
R6(R4 + R5)

C1R5R8(R6 + R7)
, (B.10)

a0 =
R4

C1C2R5R8R9
, (B.11)

b1 =
R1(R + R3)

C1R3R8(R1 + R2)
, (B.12)

b0 =
R

C1C2R3R8R9
, (B.13)

K1 =
Rf

Ro
, (B.14)

K2 =
R2R5(R + R3)(R6 + R7)

R3R7(R1 + R2)(R4 + R5)
. (B.15)

By equating the desired D(s) (Eq. (B.1)) with Eq. (B.9), the zeros, poles, and gain kn of

D(s) can be related to resistor and capacitor component values (Eqs. (B.10)–(B.15)) for

realizing the notch filter.

Remark 3 If the output is V1 (Eq. (B.5)), then the circuit behaves as a high-pass filter;

if the output is V2 (Eq. (B.6)), then we have a band-pass; and finally, if the output is V3

(Eq. (B.5)), then the circuit is a low-pass filter.

B.1.1 Example Notch Filter Realization

In the following, we find the capacitor and resistor component values for realizing the notch

filter D(s) (in Chapter 3) given by

D(s) = kD
(s − 2πz1)(s − 2πz2)

(s − 2πp1)(s − 2πp2)
, (B.16)

where kD = 2.22, z1 = −5 + j475 Hz, z2 = −5− j475 Hz, p1 = −100 Hz, and p2 = −5000

Hz. Substituting in values, we rewrite D(s) in a more convenient form to get

D(s) = 2.22
s2 + 62.83s + 8.908 × 106

s2 + 3.2044s + 1.974 × 107
. (B.17)
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Equating the appropriate coefficients in D(s) with the Eqs. (B.10)–(B.15), we find that

a1 = 62.83 =
R6(R4 + R5)

C1R5R8(R6 + R7)
, (B.18)

a0 = 8.908 × 106 =
R4

C1C2R5R8R9
, (B.19)

b1 = 3.2044 =
R1(R + R3)

C1R3R8(R1 + R2)
, (B.20)

b0 = 1.974 × 107 =
R

C1C2R3R8R9
, (B.21)

K1K2 = 2.22 =
Rf

Ro

R2R5(R + R3)(R6 + R7)

R3R7(R1 + R2)(R4 + R5)
. (B.22)

Picking C1 = 0.1 µF , C2 = 0.1 µF , R = 10 kΩ, R2 = 10 kΩ, R4 = 2.2 kΩ, R5 = 56 kΩ,

R6 = 1 kΩ, R8 = 2.2 kΩ, and Ro = 4.7 kΩ, we solve for the remaining resistor values to

get:

R7 =
R6(R4 + R5)

a1C1R5R8
− R6 = 356 kΩ, (B.23)

R9 =
R4

a0C1C2R5R8
= 20 kΩ, (B.24)

R3 =
a0RR5

b0R4
= 1.15 kΩ, (B.25)

R1 =
a0b1C1R2R5R8

b0R4 + a0R5 − b1a0C1R5R8
= 26.6 kΩ, (B.26)

K2 =
R2R5(R + R3)(R6 + R7)

R3R7(R1 + R2)(R4 + R5)
= 0.54, (B.27)

K1 = 2.22/K2 = 4.11, (B.28)

Rf = RoK1 = 19.3 kΩ, (B.29)

Using the capacitor and resistor values, the circuit shown in Fig. B.2 can be realized for

D(s) (For sample MATLAB code of realizing capacitor and resistor values for D(s), refer to

Appendix E, Section E.1.1). The frequency response for such a circuit is shown in Chapter 3,

Fig. 3.3. In the figure, the measured frequency response of the experimental piezoactuator

system is depicted by the dashed line, the notch filter is shown as the dotted line, and the

notch filter cascaded with the experimental system is represented by the solid line. The

measured gain margin of the original system is −17.05 dB, whereas, the gain margin of the

composite system is improved to 30.86 dB using the notch filter.
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B.2 Analog High-gain Feedback Controller Circuit

The analog high-gain feedback controller and signal condition circuit used in Chapters 3 and

6 are shown in Figs. B.3, B.4 and B.5. Figure B.3 show the block diagram of feedback and

feedforward controller. The circuit diagram for each of the blocks in this figure are shown

in Figs. B.4 and B.5. The transfer function for the proportional-derivative (PD) controller

is given by:

u(s)

e(s)
=

Rp

10 KΩ
+

RD

1 KΩ
· 1

RC
· s

(s + 1/RC)2
,

, Kp + KD
s

(s + a)2
. (B.30)

Σ
+
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D(s)

xref

u fb

u ff
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N(s) Output to PC

(From PC)

(From PC)

Figure B.3: Block diagram of feedback and feedforward controller.
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Appendix C

MISCELLANEOUS ANALYSIS

C.1 Designing ILCA for Hysteretic Systems

The objective of iterative learning control is to find an input sequence uk(t), for t ∈ [t0, T ],

such that when the input sequence is successively applied to a system, the system’s output

converges uniformly to a desired trajectory yd(t) on t ∈ [t0, T ]. In order to design an

effective ILC algorithm, the characteristics of the system must be taken into account. In

this section, we describe the design of an ILCA for hysteretic systems. We start with the

system inversion concept for linear systems and then discuss the generalization of Arimoto

et al.’s [158] work on ILC. The results will be used to design a suitable ILC algorithm for

hysteretic systems.

C.1.1 Review of System Inversion

Consider the linear time-invariant (LTI) single-input single-output (SISO) system with the

following state-space representation:

ẋ(t) = Ax(t) + Bu(t), (C.1)

y(t) = Cx(t), (C.2)

where x ∈ R
n, and u, y ∈ R. Differentiate the output until the input appears explicitly

ẏ(t) = Cẋ(t)

ẏ(t) = CAx(t) + CBu(t). (C.3)

If CB = 0, then differentiate until the output appears and in general for a system with

relative degree r, the input appears explicitly after differentiating the output r-times, i.e.,

y(r)(t) = CArx(t) + CAr−1Bu(t). (C.4)



193

Since CAr−1B 6= 0, we can solve for the input directly to obtain

u(t) = [CAr−1B]−1(yr(t) − CArx(t)). (C.5)

This approach to find an input to track a desired trajectory is known as the system inversion

technique [14, 16].

C.1.2 Generalization of Arimoto et al.’s Work

We begin with some definitions. The norm ||z|| of a vector z is a real-valued function with

the following properties:

i. ||z|| ≥ 0 for all z ∈ V and ||z|| = 0 if and only if z = 0,

ii. ||cz|| = |c| · ||z|| for any z ∈ V and any c ∈ R, and

iii. ||z + w|| ≤ ||z|| + ||w|| for any z, w ∈ V .

The following vector or matrix norm and function norm of the vector-valued function

z(·) defined on [t0, T ] are used in the analysis of the iterative learning control process:

||z(t)||∞ = max
1≤i≤q

|zi(t)|, (C.6)

||M ||∞ = max
1≤i≤q







q
∑

j=1

|mij |







, (C.7)

||z(·)||λ = sup
t0≤t≤T

{

e−λt||z(t)||∞
}

, (C.8)

where M is an q × q matrix with entries mij .

The formal definition of the λ-norm for a function f : [t0, T ] → R
n is given by [17, 196]

||f(·)||λ , sup
t∈[t0,T ]

{

e−λt||f(t)||∞
}

. (C.9)

Arimoto et al. [17] showed that for a linear time-invariant system of the form:

ẋ(t) = Ax(t) + Bu(t), (C.10)

y(t) = Cx(t), (C.11)
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which satisfies certain conditions, the iterative learning control law given by

uk+1(t) = uk(t) + Γ[ẏd(t) − ẏk(t)], (C.12)

converges provided that

||I − CBΓ||∞ < 1, (C.13)

where ||z||∞ is the standard infinity norm of a vector z. In the condition (C.13), a constant Γ

exists that satisfies the inequality provided the matrix CB has full rank. For a relative degree

one system (CB 6= 0), this condition is easily met. Additionally, Arimoto et al.’s analysis

assumes that the sign of the product CB must be known, that is, for a fixed Γ, information

about how the input affects the output is required in order to satisfy condition (C.13).

Likewise, the work of Moore [165] concludes that for a linear system of the form y = Tsu,

the input update law given by

uk+1 = Tuuk + Te(yd − yk), (C.14)

where Tu and Te are both casual operators, converges if

||Tu − TeTs||i < 1. (C.15)

For simplicity, assuming that Te = I and for a fixed Te = constant, condition (C.15)

is satisfied provided the phase of Ts is known. This can be interpreted as knowing the

direction to apply the input to reduce the tracking error for the next iteration, a concept

similar to Arimoto et al.’s assumption for the sign of the CB term. As long as the input

is pointed away from the direction of increasing error, the input update law will converge.

Motivated by this observation, iterative learning control for Preisach-type hysteretic systems

is developed by taking advantage of the concept of direction. To begin, we discuss in the

following the generalization of Arimoto et al.’s work to a linear system with r relative degree

and then make connections with ILC for hysteretic systems.

Consider the linear time-invariant (LTI) single-input single-output (SISO) system with

the following state-space representation:

ẋ(t) = Ax(t) + Bu(t), (C.16)

y(t) = Cx(t), (C.17)
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where x ∈ R
n, and u, y ∈ R. We assume the following for the linear system:

1a. The linear system has a well defined relative degree r.

2a. The first r − 1 derivatives of the output satisfies

yk(t0) = yd(t0),

ẏk(t0) = ẏd(t0),

... =
...

y
(r−2)
k (t0) = y

(r−2)
d (t0),

y
(r−1)
k (t0) = y

(r−1)
d (t0),

for k = 0, 1, 2, · · · .

3a. The input u0 ∈ C0([t0, T ]) and yd ∈ C(r)([t0, T ]).

Consider the input update law of the form

uk+1(t) = uk(t) + ρe
(r)
k (t) (C.18)

where e(t) , yd(t) − yk(t), and e(r)(t) , dr

dtr
[e(t)].

Theorem 3 Suppose the linear system satisfies Assumptions 1a, 2a, and 3a. Let xk(t0) =

xd(t0) for all k ∈ N. If

||I − CAr−1Bρ||∞ ≤ γ < 1, (C.19)

then the input update law given by Eq. (C.18) will generate a sequence of inputs, uk(t),

t ∈ [t0, T ], such that

uk(t) → ud(t), (C.20)

for all t ∈ [t0, T ], uniformly in t. Furthermore, the sequence yk(t), t ∈ [t0, T ], generated by

these controls is such that

yk(t) → yd(t), (C.21)

for all t ∈ [t0, T ], uniformly in t.
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Proof

It follows from the definition of the error e(t) that

e
(r)
k+1(t) = y

(r)
d (t) − y

(r)
k+1(t). (C.22)

By the relative degree assumption, we have that

y(r)(t) = CArx(t) + CAr−1Bu(t); CAr−1B 6= 0, (C.23)

and substituting this into Eq. (C.22) along with the solution to the state x(t), we obtain

e
(r)
k+1(t) = y

(r)
d (t) −



CAreAtxk+1(t0) +

t
∫

t0

CAreA(t−τ)Buk+1(τ)dτ + CAr−1Buk+1(t)



 .

(C.24)

Next, we substitute the input update law Eq. (C.18) into the above expression to obtain,

e
(r)
k+1(t) = y

(r)
d (t) −



CAreAtxk+1(t0) +

t
∫

t0

CAreA(t−τ)Buk(τ)dτ

+CAr−1Buk(t) + CAr−1Bρe
(r)
k (t) +

t
∫

t0

CAreA(t−τ)Be
(r)
k (τ)dτ



 ,

= y
(r)
d (t) − y

(r)
k (t) − CAr−1Bρe

(r)
k (t) −

t
∫

t0

CAreA(t−τ)Be
(r)
k (τ)dτ,

= [1 − CAr−1Bρ]e
(r)
k (t) −

t
∫

t0

CAreA(t−τ)Be
(r)
k (τ)dτ. (C.25)

Now, we take the vector ∞-norm of both sides to get

∥

∥

∥
e
(r)
k+1(t)

∥

∥

∥

∞
=

∥

∥

∥

∥

∥

∥

[1 − CAr−1Bρ]e
(r)
k (t) −

t
∫

t0

CAreA(t−τ)Be
(r)
k (τ)dτ

∥

∥

∥

∥

∥

∥

∞

,

≤
∥

∥[1 − CAr−1Bρ]
∥

∥

∞

∥

∥

∥
e
(r)
k (t)

∥

∥

∥

∞
+

t
∫

t0

∥

∥

∥
CAreA(t−τ)B

∥

∥

∥

∞

∥

∥

∥
e
(r)
k (τ)

∥

∥

∥

∞
dτ.

(C.26)
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Next, we multiply both sides by e−λt, i.e.,

e−λt
∥

∥

∥e
(r)
k+1(t)

∥

∥

∥

∞
≤

∥

∥[1 − CAr−1Bρ]
∥

∥

∞
e−λt

∥

∥

∥e
(r)
k (t)

∥

∥

∥

∞

+

t
∫

t0

∥

∥

∥
CAreA(t−τ)B

∥

∥

∥

∞
e−λ(t−τ)e−λτ

∥

∥

∥
e
(r)
k (τ)

∥

∥

∥

∞
dτ,

≤
∥

∥[1 − CAr−1Bρ]
∥

∥

∞
e−λt

∥

∥

∥
e
(r)
k (t)

∥

∥

∥

∞

+ sup
t0≤t≤T

{∥

∥CAreAtB
∥

∥

∞

}

sup
t0≤t≤T

{

e−λt
∥

∥

∥e
(r)
k (t)

∥

∥

∥

∞

}

t
∫

t0

e−λ(t−τ)dτ,

≤
∥

∥[1 − CAr−1Bρ]
∥

∥

∞
e−λt

∥

∥

∥
e
(r)
k (t)

∥

∥

∥

∞
+ h0

∥

∥

∥
e
(r)
k (·)

∥

∥

∥

λ

t
∫

t0

e−λ(t−τ)dτ.

(C.27)

Then we take the supremum of both sides to obtain

sup
t0≤t≤T

{

e−λt
∥

∥

∥
e
(r)
k+1(t)

∥

∥

∥

∞

}

≤
∥

∥[1 − CAr−1Bρ]
∥

∥

∞
sup

t0≤t≤T

{

e−λt
∥

∥

∥
e
(r)
k (t)

∥

∥

∥

∞

}

+h0

∥
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∥e
(r)
k (·)

∥

∥

∥

λ
sup

t0≤t≤T

t
∫

t0

e−λ(t−τ)dτ,

∥

∥

∥
e
(r)
k+1(·)

∥

∥

∥

λ
≤

[

∥

∥[1 − CAr−1Bρ]
∥

∥

∞
+ h0

1 − e−λ(T−t0)

λ

]

∥

∥

∥
e
(r)
k (·)

∥

∥

∥

λ
,

=

[

γ + h0
1 − e−λ(T−t0)

λ

]

∥

∥

∥e
(r)
k (·)

∥

∥

∥

λ
.

(C.28)

Since γ is less than 1, it is possible to choose λ > 0 sufficiently large so that

η = γ + h0
1 − e−λ(T−t0)

λ
< 1. (C.29)

Then, the sequence ek(t) is a contraction so that ||ek(·)||λ → 0 as k → ∞ and it can be

easily shown that

∥

∥

∥e
(r)
k (·)

∥

∥

∥

λ
≤ ηk

∥

∥

∥e
(r)
0 (·)

∥

∥

∥

λ
→ 0, (C.30)

for all t ∈ [t0, T ] as k → ∞, uniformly in t, and by Assumption 2, it follows that

yk(t) → yd(t), (C.31)
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for all t ∈ [t0, T ] as k → ∞, uniformly in t.

Based on the above analysis and the result of Sugie and Ono [163], for a linear system

with relative degree r the ILCA of the form:

uk+1(t) = uk(t) + ρ
dr

dtr
[ek(t)], ∀t ∈ [t0, T ], (C.32)

converges. For a rate-independent hysteretic system, the input affects the output directly,

therefore the relative degree of the system is zero. Based on this observation and the above

result, we select the ILCA for hysteretic systems of the form:

uk+1(t) = uk(t) + ρ[ek(t)], ∀t ∈ [t0, T ], (C.33)

where ρ is a sufficiently small constant. Another motivation for choosing this form is if full

plant knowledge is available (i.e., the hysteresis behavior and LTI dynamics are completely

known), then exact output tracking is achieved in one iteration. For instance, the term

ρ[ek(t)] in Eq. (C.33) can be replaced with the candidate function:

Ψ(·) = H−1 ◦ G−1(·), (C.34)

where H−1(·) is the inverse of the hysteresis model (assumed to exist), and G−1(·) is the

inverse of the LTI dynamics found by using the inversion-based approach [14]. Assuming

the system to be minimum phase, the input update law gives one step convergence as follows

(explicit time dependence is omitted for ease in notation):

ud − uk+1 = ud − uk − [Ψ(yd) − Ψ(yk)]

= ud − uk −
[

H−1 ◦ G−1(yd) −H−1 ◦ G−1(yk)
]

Realizing that G−1(yd) = G−1 ◦ G ◦ H(ud) = H(ud) and similarly for G−1(yk), we obtain

ud − uk+1 = ud − uk −
[

H−1 ◦ H(ud) −H−1 ◦ H(uk)
]

= ud − uk − ud + uk

= 0

which gives one step convergence.
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However, full plant knowledge may be difficult to obtain in practice, especially for sys-

tems with hysteresis. On the other hand, the LTI dynamics can be accurately modeled,

i.e., dynamic models can be obtained over relatively small displacement ranges where hys-

teresis is negligible (e.g., see [99]). To this end, we consider a more practical alternative for

achieving precision positioning by picking the following operator:

Ψ(·) = ρG−1(·) (C.35)

where ρ is a positive constant and G−1 is the inverse of the LTI dynamics found by the

inversion-based approach. In addition, by neglecting the effects of dynamics, we can rewrite

the iterative learning control law in the form given by Eq. (C.33) which focuses our attention

on the hysteresis effects. Now the question to ask is what value ρ will result in a convergence

of the control law Eq. (C.33)? Though the above control is chosen for hysteretic systems,

there is no guarantee that it will converge since the system is not linear. The proof of

convergence for the above ILCA is described in Chapter 5.

C.2 Experimental Counter Example

The fact that hysteresis does not satisfy Definition 5 is not astonishing because given a

general desired trajectory vd ∈ C0(I), for any value ρ the ILCA Eq. (5.4) does not converge

as illustrated in the following example, where we make use of ‖ · ‖∞ norm. To illustrate,

consider the experimental results in Figs. C.1(a) and (b) measured from a Burleigh AFM1

piezo scanner which shows the effect of hysteresis2. The solid line in Fig. C.1(a) is the input

versus time profile that was applied to the piezo scanner and the solid line in Fig. 5.7(b) is the

corresponding measured output response. Suppose we pick the measured output response,

the solid line in Fig. C.1(b), to be the desired trajectory and label it vd. As a result, the

input that achieves vd is the solid line shown in Fig. C.1(a), which is labeled ud. We note

that |ud(t1)| = |ud(T )|. Now, we would like to apply the ILCA Eq. (5.4) to the piezo system

and without loss of generality, we set the initial input u0(t) equal to zero for all t ∈ [0, T ]

1Model Metris 2000NC

2The experimental results were obtained by operating the AFM at a relatively fast speed so that creep
effect is small and slow enough such that vibration effect is negligible.
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Figure C.1: Hysteresis behavior: (a) hysteresis curve and corresponding (b) input and (c)
output versus time.

(dashed line in Fig. 5.7(a)). Consequently, the initial output is v0(t) = 0 for all t ∈ [0, T ]

(dashed line in Fig. C.1(b)). Immediately, if we apply ILCA Eq. (5.4) and pick any ρ < 0,

the sequence of inputs generated by ILCA Eq. (5.4) does not contract to the desired input

ud as k → ∞. Specifically, we conclude that ‖ud(·) − uk+1(·)‖∞ ≥ ‖ud(·) − uk(·)‖∞ for all

k ∈ N0. For instance, when k = 0 the norm ‖ud(·)−u0(·)‖∞ = 1, but since vd(t)−v0(t) ≥ 0

for all t ∈ (0, T ], at the first step we observe that |ud(t1) − u1(t1)| > 1, implying that the

norm ‖ud(·) − u1(·)‖∞ exceeds ‖ud(·) − u0(·)‖∞. Now for ρ > 0, over the interval [0, t1] it

is possible to show contraction of the input sequence Eq. (5.4). But over the entire interval

[0, T ] for any ρ > 0, when k = 0 we find that ‖ud(·) − u1(·)‖∞ ≥ ‖ud(·) − u0(·)‖∞ because

u1(t) is strictly greater than zero for all t ∈ (0, T ], implying that Eq. (5.4) fails to contract

on the first step. Therefore, contraction of ILCA Eq. (5.4) in the ‖ · ‖∞ sense, in general,

cannot be achieved for any constant ρ. The failure to show contraction is associated with

branching behavior, where the ascending and descending paths in the u versus v plane do

not coincide.



201

C.3 Convergence of ILCA for Incrementally Strictly Increasing Operators

Venkataraman and Krishnaprasd [177] have shown, based on the contraction mapping prin-

ciple, that if a nonlinear operator is incrementally strictly increasing then ILCA Eq. (5.4)

converges. Their result is restated in the following lemma and theorem, and a detailed

discussion can be found in [177].

Assumption 3 The incrementally strictly increasing property holds for every closed subin-

terval Ia,b , [ta, tb] ⊂ I.

Lemma 3 Let the nonlinear operator F : C0(I) → C0(I) be incrementally strictly in-

creasing with constants η1 and η2 as defined by Definition 5, and satisfy Assumption 3.

Additionally, if the constant

0 < ρ ≤ 1

η2
, (C.36)

then
∥

∥

∥

∥

(

1

ρ
u2 − F (u2)

)

−
(

1

ρ
u1 − F (u1)

)∥

∥

∥

∥

∞

≤
(

1

ρ
− η1

)

∥

∥u2 − u1

∥

∥

∞
, (C.37)

for all u1, u2 ∈ C0(I).

Proof

For u1, u2 ∈ C0(I) with u1 ≤ u2, from Eq. (5.6) and (C.36), we find that

η1(u2 − u1) ≤ F (u2) − F (u1) ≤ η2(u2 − u1) ≤
1

ρ
(u2 − u1). (C.38)

We rewrite Eq. (C.38) in the following form:

0 ≤
(

1

ρ
u2 − F (u2)

)

−
(

1

ρ
u1 − F (u1)

)

≤
(

1

ρ
− η1

)

(u2 − u1). (C.39)

Likewise, for u1, u2 ∈ C0(I) with u2 ≤ u1, we find that

0 ≥
(

1

ρ
u2 − F (u2)

)

−
(

1

ρ
u1 − F (u1)

)

≥
(

1

ρ
− η1

)

(u2 − u1). (C.40)

Applying the ‖ · ‖∞ norm to Eqs. (C.39) and (C.40), we obtain
∥

∥

∥

∥

(

1

ρ
u2 − F (u2)

)

−
(

1

ρ
u1 − F (u1)

)∥

∥

∥

∥

∞

≤
(

1

ρ
− η1

)

∥

∥u2 − u1

∥

∥

∞
, (C.41)
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therefore the assertion holds.

For general u1, u2 ∈ C0(I) with F incrementally strictly increasing and satisfying As-

sumption 3, we partition the interval I as follows. First, let the subinterval D1 = {t ∈
I|u1(t) ≤ u2(t)}. The set D1 is closed. Then Eq. (C.39) holds for every t ∈ D1 (Assumption

3). Let ‖ · ‖∞,D1
be the norm on C0(I) restricted to C0

1 (D1) = {u(t)|u(·) ∈ C0(I); t ∈ D1}.
As a result, we find that

∥

∥

∥

∥

(

1

ρ
u2 − F (u2)

)

−
(

1

ρ
u1 − F (u1)

)∥

∥

∥

∥

∞,D1

≤
(

1

ρ
− η1

)

∥

∥u2 − u1

∥

∥

∞,D1
. (C.42)

Second, we let D2 = {t ∈ I|u2(t) ≤ u1(t)}. The set D2 is also closed. Then Eq. (C.40)

holds for every t ∈ D2 (Assumption 3). Let ‖ · ‖∞,D2
be the norm on C0(I) restricted to

C0
2 (D2) = {u(t)|u(·) ∈ C0(I); t ∈ D2}. As a result, we find that

∥

∥

∥

∥

(

1

ρ
u2 − F (u2)

)

−
(

1

ρ
u1 − F (u1)

)∥

∥

∥

∥

∞,D2

≤
(

1

ρ
− η1

)

∥

∥u2 − u1

∥

∥

∞,D2
, (C.43)

Now I = D1 ∪ D2 and ‖ · ‖∞ = max{‖ · ‖∞,D1
, ‖ · ‖∞,D2

}. Therefore, by Eqs. (C.42) and

(C.43), we get Eq. (C.37) for all u1, u2 ∈ C0(I), which completes the proof.

Theorem 4 Consider a nonlinear system of the form v(t) = F
(

u(t)
)

where F : C0(I) →
C0(I) satisfies the conditions of Lemma 3. If the constant 0 < ρ ≤ 1/η2, then the input

sequence generated by the ILCA Eq. (5.4) converges, i.e.,

∥

∥ud − uk

∥

∥

∞
≤ γk

∥

∥ud − u0‖∞, (C.44)

where γ < 1 and uk → ud, uniformly in t, as k → ∞.

Proof

To prove the assertion, we show contraction of the input sequence Eq. (5.4). Subtracting

uk+1(t) from ud(t) and substituting F
(

u(t)
)

in place of v(t), we get

ud(t) − uk+1(t) = ud(t) − uk(t) − ρ
(

vd(t) − vk(t)
)

,

= ρ

(

1

ρ
ud(t) − F

(

ud(t)
)

)

− ρ

(

1

ρ
uk(t) − F

(

uk(t)
)

)

, (C.45)

for every t ∈ I. Taking the function ‖ · ‖∞ norm of Eq. (C.45), we obtain

∥

∥ud − uk+1

∥

∥

∞
= ρ

∥

∥

∥

∥

(

1

ρ
ud − F (ud)

)

−
(

1

ρ
uk − F (uk)

)∥

∥

∥

∥

∞

. (C.46)
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Since the operator F is incrementally strictly increasing with constants η1 ≤ η2 (Definition

5) and 0 < ρ ≤ 1/η2, then substituting the results of Lemma 3 we obtain

∥

∥ud − uk+1

∥

∥

∞
≤ ρ

(

1

ρ
− η1

)

∥

∥ud − uk

∥

∥

∞
, γ

∥

∥ud − uk

∥

∥

∞
, (C.47)

where

γ = ρ

(

1

ρ
− η1

)

= 1 − ρη1 < 1, (C.48)

because 0 < ρη1 ≤ 1, and Eq. (C.47) is a contraction. Furthermore, by induction, we find

that

∥

∥ud − uk

∥

∥

∞
≤ γk

∥

∥ud − u0‖∞, (C.49)

for all k ≥ 1, therefore the sequence ‖ud − uk‖∞ → 0 as k → ∞, hence uk converges to ud,

uniformly in t, which completes the proof.

C.4 Preisach Modeling by First Order Descending Curves [197]

This section discusses modeling the hysteresis behavior of an experimental piezo positioner,

i.e., finding the Preisach weighting surface µ. The modeling process involves isolating

the system from the effect of creep using the inversion-based feedforward approach [2]. The

parameters of the model can be used to implement the ILCA Eq. (5.4), or to find feedforward

input to compensate for hysteresis, e.g., see reference [2].

C.4.1 The Experimental Piezo System

The experimental piezo positioner studied in this section is a sectored piezoelectric-tube

(lead zirconate-titanate, PZT) positioner common in AFM-based systems, e.g., see reference

[147]. Depending on how the voltage is applied to the sectors, displacement (with sub-

nanometer resolution) along any of the three coordinate axes (x, y, and z) can be achieved.

Figure C.2 shows a photograph of the experimental piezo positioner equipped with an optical

sensor for measuring the displacement along the x-axis. In this system, a voltage amplifier

drives the piezo positioner and the input voltage to the amplifier is limited to |u| ≤ 5.0 V .
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Figure C.2: The experimental piezo positioner. Inset plot shows the hysteresis behavior.

Likewise, the maximum displacement along the x-axis is approximately ±50 µm. The

amplitude of the measured sensor noise is approximately ±10 mV , therefore the sensor

can resolve the displacement of the piezo down to ±88 nm. During the experiment, to

avoid saturating the system, the piezo-amplifier input is limited to |u| ≤ 3.75 V , hence u =

−3.75 V and ū = 3.75 V . The inset plot in Fig. C.2 shows the piezo positioner’s hysteresis

curve corresponding to an input range of |u| ≤ 3.75 V , and without compensation the

measured output hysteresis is 22% of the total displacement range (60.3 µm). Additionally,

the dominant resonant mode of the system is at 390 Hz. In this study, we model the

hysteresis behavior and apply the ILC method along the x-axis. We note that the control

method can be applied to other lateral axis (y), as well as to the z-axis, if movement leads

to significant hysteresis effect.

C.4.2 Modeling Procedures

One method to determine the Preisach weighting surface µ is to generate a collection of

“first-order descending” (FOD) curves as described in [143, 139]. For example, suppose the
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Preisach plane is in the state of negative saturation, i.e., all relays are in the −1 state.

Afterwards, apply a monotonically increasing input to a value u = α1 ≤ ū, followed by a

decrease to u = β1 ≥ u. Let the measured output value corresponding to u = α1 be vα1
and

similarly, the measured output values corresponding to u = β1 be vα1β1
. When the input

peaks at u = α1, the decrease to u = β1 sweeps out the region Ω in the Preisach plane,

which generates a descending hysteresis branch. Now define the values along the descending

branch by the function F (α1, β1) = vα1β1
− vα1

; therefore, the change in output along the

descending branch from u = α1 to u = β1 is

vα1β1
− vα1

= −2

∫∫

Ω

µ(α, β)dαdβ, (C.50)

F (α1, β1) = −2

∫ α1

β1

∫ α1

β

µ(α, β)dαdβ. (C.51)

From the above expression, the value of the Preisach weighting function µ(α1, β1) at any

point (α1, β1) ∈ P can be determined by differentiating both sides of Eq. (C.51) twice (first

with respect to β1 and then with respect to α1), e.g.,

∂2

∂α1∂β1
F (α1, β1) = −2µ(α1, β1). (C.52)

As a result, by obtaining a collection of FOD curves for points in P, we can find an approx-

imation of the Preisach weighting surface µ. For other techniques to determine the surface

µ from measured output data, see [139, 181].

To isolate and model the hysteresis effect, both creep and vibration effects must be

accounted for when obtaining the FOD (output versus input) curves. Otherwise, these

effects can lead to an inaccurate model of the hysteresis behavior. For instance, to avoid

the effect of induced structural vibrations, the frequency of the control input used to obtain

the FOD curves was kept small, i.e., we chose the scanning frequency of 1Hz, which is

significantly smaller than the dominating resonant peak of the piezo positioner at 390Hz.

To account for creep effect and model hysteresis, we use the inversion-based approach as

follows:

Step 1a: Model the Creep Effect In modeling the hysteresis behavior, 50 FOD curves

were acquired. The control input to generate the 50 FOD curves is offset from the center of
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Figure C.3: (a) Uncompensated displacement versus time. (b) Compensated displacement
versus time. (c) Uncompensated FOD curves. (d) Compensated FOD curves.

the piezo positioner’s operating range, therefore the effect of creep in the measured output

is significant. For instance, because of creep, the measured output after each input cycle

slowly drifts over a period of 50 seconds as shown in Fig. C.3(a). The corresponding 50

FOD curves are shown in Fig. C.3(c). Because of creep, the time-dependent variation in the

FOD curves no longer satisfies the rate-independent assumption of the Preisach hysteresis

model [143], i.e., when the input returns to the negative saturation point (u = u) after each

cycle, the Preisach model assumes the output returns to the same value, but experiments

indicate that it creeps over time as shown in Figs. C.3(a) and (c). This effect can lead to

an inaccurate model.

The creep effect, which occurs both in the mechanical and electrical domains, was mod-



207

k1 k2

c 1 c 2

k0

x

u

kn

c n

Creep Model

Kelvin-Voigt elements

Elastic

deflection

n

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

Time (min)

D
is

p
la

ce
m

en
t 

( 
  
 m

)
µ

Measured output
Creep model

(a)

(b)

Figure C.4: Second-order creep model (dashed line) and measured piezo positioner response
with creep behavior (solid line) versus time.

eled as a series connection of dampers (ci) and springs (ki) [184] and is described by

x(s)

u(s)
=

1

k0
+

n
∑

i=1

1

sci + ki
, (C.53)

where x(s) is the displacement of the piezo positioner (in the Laplace domain) and u(s)

is the applied input voltage. In the above equation, k0 models the elastic behavior at low

frequencies and the creep behavior is captured by selecting an appropriate model order

(n), i.e., number of damper-spring elements. The parameters (k0, ki, and ci) of the model

in Eq. (C.53) were determined by curve fitting the step response of the piezo positioner

measured over a period of 3.4 minutes as shown in Fig. C.4 [185]. A good fit was obtained

by selecting a second order (n = 2) creep model of the following form (units V/V ):
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Gc(s) ,
x(s)

u(s)
=

0.968s2 + 0.645s + 0.014

s2 + 0.565s + 0.0108
. (C.54)

In Fig. C.4, the second-order creep model (dashed line) is superimposed over the measured

piezo response with creep (solid line). The second-order model is a good fit of the creep

behavior as indicated by the comparison.

Step 2a: Compensate for Creep: Inversion-based Approach To isolate the hys-

teresis behavior from creep effect, we use the creep model Gc(s) and the inversion-based

approach [2] to find the creep-free FOD curves. This approach finds the inverse input,

which accounts for creep, to generate the FOD curves. The resulting compensated output

versus time response depicted in Fig. C.3(b) shows creep is eliminated when compared to

the uncompensated case: Fig. C.3(a). The corresponding FOD curves (output versus input

plot) which capture only the hysteresis effect are shown in Fig. C.3(d).

Step 3a: Determine the Preisach Weighting Surface The 50 measured FOD curves

shown in Fig. C.3(d) were compiled into a FOD surface over the Preisach plane P. Differ-

entiating this surface twice (first with respect to β and then with respect to α) produces

an approximation of the Preisach weighting surface µ. However, the differentiation process

can amplify the effect of noise in the measured data, which leads to an inaccurate µ surface.

To minimize this effect, we use a least squares curve-fitting process. First, for each of the

50 FOD curves with constant α (i.e., where β becomes the independent variable), a second

order polynomial F̃α(α, β) = a2β
2+a1β+a0 was fit to the data using the least squares tech-

nique. Then, the resulting FOD surface was differentiated with respect to β. Afterwards,

for each of 50 the curves from the differentiated FOD curve with constant β (i.e., where α

becomes the independent variable), a second order polynomial F̃β(α, β) = a2α
2 + a1α + a0

was fit to the data using the least squares technique. Finally, the resulting surface was dif-

ferentiated with respect to α and the approximate µ surface is shown in Fig. C.5(b). From

the weighting surface, we find that µmax = 0.57.
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Appendix D

MODIFICATIONS TO THE BURLEIGH AFM SYSTEM

This chapter discusses some modification done to the Burleigh AFM system. The infor-

mation in this chapter serves as a reference.

D.1 Optical Displacement Sensor

The optical sensor to measure the displacement of the piezo positioner along the x and y axes

is a phototransistor optical interrupter switch, model H21A1, manufactured by Fairchild

Semiconductor. Figure D.1 shows a photograph of the sensor. The sensor is simply an opti-

cal switch configured into a displacement sensor for the piezoactuator. This configuration is

used in reference [3] and a circuit diagram is shown in Fig. D.2. Other types of sensors are

available, which include: linear-variable differential transformer (LVDT), optical interferom-

etry and capacitance sensing. The choice of the optical sensor over other types is because

of its simplicity and low noise. Additionally, the experimental AFM system was custom

designed to house the optical sensor, and this feature was provided by the manufacturer,

Burleigh Instruments.

D.2 Imaging Using Spiral Raster Pattern

A spiral raster pattern illustrated in Fig. D.3 was used for AFM imaging. To generate a

spiral patter, he inputs to the x- and y-axis are sinusoidal, but phase shifted 90-degrees

relative to each other to create a spiral trajectory. The effective scan area for this type is

circular. One advantage of using the spiral trajectory over the standard type is the effects

of creep are less noticeable in the y-axis because of a relatively fast periodic trajectory

compared to the slow ramp used in the first type (cf. Figs. 2.6 and D.3).
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Figure D.1: The AFM optical-displacement sensor (compliments of Fairchild Semiconduc-
tors).
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Appendix E

SAMPLE MATLAB AND C PROGRAMS

E.1 MATLAB Programs

E.1.1 Notch Filter Realization Program

The following program complements the notch filter design discussed previously in Ap-

pendix B.1, Fig. B.2. The program computes the resistor and capacitor values. User

specifies values for c1, c2, R, R0, R2, R4, R5, R6, and R8; the program returns R1, R3, R7,

R9.

% MATLAB Code

% D(s) Notch Filter Design and Realization

% Kam K. Leang 04.09.02

%

% Notch filter D(s) has the form:

%

% s^2+a1s+a0

% D(s)= K1 K2 ------------ where K = K1*K2

% s^2+b1s+b0

% ================================================================

clear all

% Zeros

z1 = (-5+j*475)*2*pi;

z2 = z1’;

num = conv([1 -z1],[1 -z2]);
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% Poles

p1 = -100*2*pi;

p2 = -5000*2*pi;

den = conv([1 -p1],[1 -p2]);

% Transfer function of D(s)

Ds = tf(num,den);

Ds = Ds/(dcgain(Ds)); % scale to get DC gain = 1

% Realization

[num,den] = tfdata(Ds,’v’);

K = num(1);

a1 = num(2)/K;

a0 = num(3)/K;

b1 = den(2);

b0 = den(3);

% Pick the following values

c1 = 0.1e-6; % uF

c2 = 0.1e-6; % uF

R = 10e3; % Ohms

R2 = 10e3;

R4 = 2.2e3;

R5 = 0.56e3;

R6 = 1e3;

R8 = 2.2e3;

Ro = 4.7e3;

% Solve for remaing R7, R9, R3, and R1
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R7 = (R6*(R4+R5))/(a1*c1*R5*R8)-R6

R9 = R4/(a0*c1*c2*R5*R8)

R3 = (a0*R*R5)/(b0*R4)

R1 = (a0*b1*c1*R2*R5*R8)/(b0*R4+a0*R5-b1*a0*c1*R5*R8)

K2 = (R2*R5*(R+R3)*(R6+R7))/(R3*R7*(R1+R2)*(R4+R5))

% Solve for K1 such that K1*K2 = K to get feedback resistors

K1 = K/K2;

Rf = K1*Ro

E.1.2 Least-squares Based Preisach Model Program

The following program implements the modeling of the Preisach weighting approach de-

scribed in Chapter 6.

% Main Program

% Hysteresis modeling program using least-squares method

% kam k. leang 05.20.04

clear all

% ==================================================================

% load data

% ==================================================================

no = 3151; nf = 33151; % starting and ending indices of data

Nc = 300; % number of FOD curves

load vfod5.in; vin = vfod5(no:nf); % input voltage

% x-axis files

load xfod5cp2.out % creep compensated fod curves

fod_data = xfod5cp2(no+2:nf+2);

% y-axis data

%load yfod5cp3.out % creep compensated fod curves
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%fod_data = yfod5cp3(no+2:nf+2);

dN = 600; % location of maximum peak in u

lcv = 301;

for i = 1:50

upeak(i,1) = vin(lcv);

lcv = lcv + dN;

end

upeak(length(upeak)+1,1) = vin(length(vin));

upeak = flipud(upeak); % discretized input

% ascending data

ascending_u(1:301,1) = vin(1:301);

ascending_v(1:301,1) = fod_data(1:301);

lcv = 601;

for i = 1:49

ascending_u(1:301,i+1) = vin(lcv:lcv+300);

ascending_v(1:301,i+1) = fod_data(lcv:lcv+300);

lcv = lcv + dN;

end

% descending data

lcv = 301;

for i = 1:50

descending_u(1:301,i) = vin(lcv:lcv+300);

descending_v(1:301,i) = fod_data(lcv:lcv+300);

lcv = lcv + dN;

end

[row,col] = size(descending_v);

dec_v = descending_v; asc_v = ascending_v;

asc_u = ascending_u; dec_u = descending_u;

u = [asc_u(:,1); dec_u(2:row-1,1)];

v = [asc_v(:,1); dec_v(2:row-1,1)];
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for i=2:col

u = [u; asc_u(:,i); dec_u(2:row-1,i)];

v = [v; asc_v(:,i); dec_v(2:row-1,i)];

end

u = [u;-5]; v = [v; v(length(v))];

% ========================================================

% find Mu using lsq method

% ========================================================

actual_u = u; actual_v = v;

[u,v,u_grid_fine] = discrete_io3(asc_u,dec_u,asc_v,dec_v);

[Bf,Af,Pf] = neg_sat(u_grid_fine);

du = u_grid_fine(2)-u_grid_fine(1);

u_grid_coarse = u_grid_fine;

[B,A,P] = neg_sat(u_grid_coarse);

phi = []; P = relay_on4(B,A,P,u(1));

phi = comp_vect2(P);

for i = 2:length(u)

if (u(i) >= u(i-1))

P = relay_on4(B,A,P,u(i));

phi = [phi; comp_vect2(P)];

else

P = relay_off4(B,A,P,u(i));

phi = [phi; comp_vect2(P)];

end

end

disp(’Computing Mu surface ... please wait.’);

[row,col] = size(phi);

Aeq = []; beq = [];

lb = 1e-4*ones(col,1);

ub = .1*ones(col,1);
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m = lsqlin(phi,v,[],[],Aeq,beq,lb,ub);

M = extract_m(m,B,A,B);

Mu = extract_mu(m,B,A,P);

figure(1); clf;

surf(B,A,Mu); shading interp;

return

% Routine for switching relays to +1 state

function P = relay_on4(B,A,P,u_a)

dV = (B(1,2)-B(1,1))/2;

S = length(P);

for i = 1:S

for j=1:S

if (A(i,j) <= u_a)

P(i,j) = 1;

end

end

end

for i = 1:S

for j = 1:S

temp = abs(A(i,j)-u_a);

if (temp < dV)

P(i,j) = 1;

end

end

end

for i = 1:S

for j = 1:S

if (B(i,j)>A(i,j))

P(i,j) = NaN;
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end

end

end

% Relay_on4.m

% Routine for switching relays to +1 state

function P = relay_off4(B,A,P,u_b)

dV = abs(B(1,2)-B(1,1))/2;

S = length(P);

for i = 1:S

for j=1:S

if ((B(i,j)-u_b) >= dV)

P(i,j) = -1;

end

end

end

for i = 1:S

for j = 1:S

if (B(i,j) > A(i,j))

P(i,j) = NaN;

end

end

end

% Relay_off4.m

% resest presiach plane to -1

% upeak = discretized input vector

% =================================================

function [B,A,M] = neg_sat(upeak)

[B,A] = meshgrid(upeak,upeak);

M = -1*ones(size(B));
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S = length(upeak);

for i = 1:S

for j = 1:S

if (B(i,j)>A(i,j))

M(i,j) = NaN;

end

end

end

% Compute_vect2.m

% computes row vector

% A1 = row vector

% M = input matrix

% format:

% . .. .. ..

% 10 9 8 7

% 6 5 4

% 3 2

% 1

% =================================================

function [A1] = comp_vect2(M)

A1 = M(1,1);

for i = 2:length(M)

for j = i:-1:1

A1 = [A1, M(i,j)];

end

end
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E.2 C Programs

The C programs for data acquisition and real-time control are attached below. The programs

were used for the experiments in Chapters 3 and 6.

E.2.1 Feedforward Control and Data Acquisition

This program reads an input file, then sends voltage signals to the DAC channels and collects

sensor signals from the ADC channels. The measured signals are saved to an output file.

This program can be used as a template to write other A/D programs for experiments.

/* Scan program for AFM; scan freq=30hz, open-loop

inverse + feedback

Last Updated: 09.04.02

Author: Kam Leang

Synopsis

input data file [xd xopt uff], rows=664

output data file [x xd xopt uff y], rows=1328

*/

#include <stdlib.h>

#include <stdio.h>

#include <dos.h>

#include <conio.h>

#include <malloc.h>

#include <math.h>

#include <errno.h>

#define pi 3.14159

#define board1 0x260

#define board2 0x200
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#define DAC0 0x04

#define DAC1 0x06

#define vmax 5

#define interrupt_loc 0x08

// USER MODIFIABLE VALUES ********************************************

#define N_CHAN_1 2 /* Define number of channels to acquire from */

#define N_CHAN_2 1 /* NOTE: A/D reads in reverse starting w/ last */

/* w/ last CHAN first */

#define inSize 664 /* # points per period (Nperiod) */

#define outSize 1328 /* 2 cycles: i.e., 2xNperiod or 2xinSize */

#define cycleSize 1600

#define freq 20000

// User-defined routines

void user_init(int,int); /* Init. program. Sets the frequency */

void user_interface(void); /* Int. task. Executed in the foreground */

void user_task(void); /* Periodic task. Exec in the background */

void user_terminate(void); /* Termtn. task. Exec after terminate() */

void user_abort(void); /* Abort task. Executed after ctrl-break */

void newbreak_start(void),newtask_init(void);

void terminate(void),newbreak_stop(void),newtask_start(void);

void out(float,int,int),start_AD(int);

void write_data(void);

void read_data(void);

void cycle_system(void);

int countdown,lobyte,hibyte,doscount,done,delay_count,count;

float in(int);

// USER VARIABLES HERE ************************************************
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float x[outSize], ucl_out[outSize], xopt_out[outSize], uff_out[outSize];

float xd[inSize], xopt[inSize], uff[inSize], cycle_data[cycleSize];

float xd_out[outSize], InputScale, InputScale_increment=.1;

int int_count, Inv, cycleloop=1;

int Ncycle=300, Nstop, Ncollect;

int Ncollect_count, traj_count, trajStop;

char outfile[80]; char cyclefile[]="cycle.in"; char infile[80];

// Main program

void main(void){

printf("Enter INPUT file: "); gets(infile);

printf("Enter OUTPUT file: "); gets(outfile);

read_data();

Nstop = outSize-1; trajStop = inSize-1;

int_count = 0; traj_count = 0; Ncollect_count = 0;

Ncollect = outSize/inSize; /* number of cycles data collected */

printf("Scanning freq: 30 Hz and Sampling freq: %d Hz\n",freq);

printf("Number of cycles: %d\n",Ncollect);

printf("Apply (0=xopt; 1=uff)? "); scanf("%d",&Inv); /* w/o uff */

printf("Input Scale: "); scanf("%f",&InputScale); /* w/o uff */

user_init(board1,N_CHAN_1);

out(0.0,board1,DAC0); out(0.0,board1,DAC1); /* zero boards outputs */

printf("Press any key to CYCLE system\n"); getch();

printf("Cycling....\n"); cycle_system();

printf("Press any key to begin SCAN\n"); getch();

newtask_init();newbreak_start(); newtask_start();
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while(!done){

//user_interface();

}

out(0.0,board1,DAC0); out(0.0,board1,DAC1);

terminate();

write_data();

}

// user routine. program executes this loop when interrupt occurs

void user_task(void) {

if(Inv == 0){ /* apply FB only */

out(InputScale_increment*xopt[int_count],board1,DAC0);

out(0.0,board1,DAC1);

}

else{ /* apply FB + FF */

out(InputScale_increment*xopt[int_count],board1,DAC0);

out(InputScale_increment*uff[int_count],board1,DAC1);

}

start_AD(board1); x[traj_count] = in(board1); /* PIN 2 */

start_AD(board1); ucl_out[traj_count] = in(board1); /* PIN 1 */

xd_out[traj_count] = InputScale_increment*xd[int_count];

xopt_out[traj_count] = InputScale_increment*xopt[int_count];

uff_out[traj_count] = InputScale_increment*uff[int_count];

int_count++; traj_count++;

if (int_count>trajStop)

int_count = 0;

if (traj_count > Nstop){

Ncollect_count++; traj_count = 0;

InputScale_increment = InputScale_increment + 0.01;
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if (InputScale_increment > InputScale)

InputScale_increment = InputScale;

if (Ncollect_count > (Ncycle - 1))

done = 1;

}

}

void user_interface(void){

printf("*\n");

}

void read_data(void){

FILE *fp1;

float temp1,temp2,temp3;

int i;

if((fp1=fopen(infile,"r"))==NULL){

perror("Error opening input file!!");

exit(EXIT_FAILURE);

}

for(i=0;i<(inSize);i++){

fscanf(fp1,"%f %f %f\n",&temp1,&temp2,&temp3);

xd[i]=temp1;

xopt[i]=temp2;

uff[i]=temp3;

}

fclose(fp1);

printf("Acquired input data file!\n");

}

// Cycles input cycleloop times

void cycle_system(void){

int i,j;

float temp1;
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FILE *fp3;

if((fp3=fopen(cyclefile,"r"))==NULL){

perror("Error opening Cycle Data File!");

exit(1);

}

else{

for(i=0;i<cycleSize;i++){

fscanf(fp3,"%f\n",&temp1);

cycle_data[i]=temp1*5.0;

}

}

fclose(fp3);

for(i=0;i<cycleloop;i++){

for(j=0;j<cycleSize;j++){

out(cycle_data[j],board1,DAC0);

delay(20);

printf("Cycle x (i=%d, j=%d)\n",i,j);

}

}

out(0.0,board1,DAC0);out(0.0,board1,DAC1);

}

void write_data(void){

FILE *fp2;

int i;

if((fp2=fopen(outfile,"w"))==NULL)

printf("Error opening %s!! No data saved!\n",outfile);

else{

for(i=0;i<outSize;i++){

fprintf(fp2,"%f %f %f %f %f\n",x[i],xd_out[i],xopt_out[i],

uff_out[i],ucl_out[i]);
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}

printf("Done writing OUTPUT DATA to %s\n",outfile);

fclose(fp2);

}

}

// ***********************************************************

// DO NOT MODIFY BELOW

// Routines to change the interrupt rate of the timer

// and to redirect the timer processing

// ***********************************************************

void (interrupt *oldtask) (void);

void interrupt newtask(void) {

user_task();

outp(0x20,0x20);}

void newtask_init(void) {

countdown=(int)(1193180./freq);

hibyte=(int)(countdown/256);

lobyte=countdown-hibyte*256;

count=done=0;

doscount=(int)(freq/18.2);

}

void newtask_start(void) {

disable();

oldtask=getvect(interrupt_loc);

outp(0x43,0x36); outp(0x40,lobyte); outp(0x40,hibyte);

setvect(0x08,newtask);

enable(); }

void newtask_stop(void) {

disable();
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setvect(interrupt_loc,oldtask);

outp(0x43,0x36); outp(0x40,0); outp(0x40,0);

enable();

}

/* Routines to redirect the Ctrl-Break processing */

void (interrupt *oldbreak) ();

void interrupt newbreak(void) {

newtask_stop(); newbreak_stop(); outp(0x20,0x20);

user_abort(); exit(1);

}

void newbreak_start (void) {

disable();

oldbreak=getvect(0x23); setvect(0x23,newbreak);

enable();

}

void newbreak_stop(void) {

disable();

setvect(0x23,oldbreak);

enable();

}

void terminate(void) {

newtask_stop(); newbreak_stop(); outp(0x20,0x20);

user_terminate(); /*exit(1);*/

}

void user_init(int base,int no_chan_DA) {

outp(base+0x01,0x34); /* Initialize Command Register 2 */

outp(base+0x02,0x00); /* Initialize Command Register 3 */

outp(base+0x0F,0x00); /* Initialize Command Register 4 */

outp(base+0x04,0x00); /* Initialize D/A’s */
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outp(base+0x05,0x08);

outp(base+0x06,0x00);

outp(base+0x07,0x08);

outp(base,0x08+no_chan_DA-1); /* Write to command register 1 */

/* to set channel and gain */

if(no_chan_DA>1){

outp(base,0x08+no_chan_DA-1+0x80);

}

/* Start A/D conversion */

outp(base+0x17,0x34); /* Select Counter A0, Mode 2 */

/* Force A0 high */

outp(base+0x08,0x00); /* Write to A/D Clear Register */

while(inp(base)%2){

inp(base+0x0A); /* Clear A/D */

inp(base+0x0A);

}

}

void user_abort(void) {

int i;

out(0,board1,DAC0);

out(0,board1,DAC1);

out(0,board2,DAC0);

out(0,board2,DAC1);

printf("User Abort -- End of Program\n");

//write_data();

}

void user_terminate(void) {

printf("Done Collecting Data\n");

}

void out(float voltage,int base,int chan){
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long msb,lsb;

long dacout;

if(voltage > 4.9976) {voltage=4.9976;}

if(voltage < -5.) {voltage=-5.;}

dacout=(int)(voltage/vmax*2048);

if(voltage<0) {dacout=65536+dacout;}

msb=(int)(dacout/256);

lsb=dacout-msb*256;

outp(base+chan,lsb);

outp(base+chan+0x01,msb);

}

float in(int base){

long ADin,msb,lsb;

float involtage;

int status;

status=1;

while(status){

if(inp(base)%2){ /* Check status Register */

/* Read A/D Conversion */

lsb=inp(base+0x0A); /* Read low Byte */

msb=inp(base+0x0A); /* Read high Byte */

ADin=msb*256+lsb;

if(ADin>2047) {ADin=ADin-65535;}

involtage=(float)(ADin)/2048*vmax;

status=0;

}

}

return involtage;

}

void start_AD(int base){
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outp(base+0x03,0x00); /* Start convert register */

}

E.2.2 AFM Imaging Program with Automated ILC Loop for Hysteresis Compensation

This program reads an input file and sends voltage signals to the DAC channels to control

an AFM in both the x and y axes. The program also collects data from the AFM cantilever

for plotting an image of the surface topology. Additionally, the program automatically runs

N number of iterations, where the user provide the iteration number N . The measured

data are saved to an output file after the program terminates.

//AFM IMAGING program

// kam leang 06.06.04

//

// User supplies an input file containing one column of data in the

// following format:

//

// ux = [1 - 57000]

// uy = [57001 - 114000]

// param = [114001 - 114010] % parameter array

//

// Program sends ux and uy to AFM, then reads x or y optical sensors,

// and z, writes to output file in the following format:

//

// x/y = [1 - 57000]

// z = [57001 - 114000] % no data saved to this block

// param = [114001 - 114010] % parameter array

//

//

// ===================================================================
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#include <stdlib.h>

#include <stdio.h>

#include <dos.h>

#include <conio.h>

#include <math.h>

#include <errno.h>

#include <alloc.h>

#define board1 0x260

#define board2 0x200

#define DAC0 0x04

#define DAC1 0x06

#define vmax 5

#define interrupt_loc 0x08

// USER MODIFIABLE VALUES ********************************************

#define N_CHAN_1 3

#define N_CHAN_2 1

#define inSize 800

#define outSize 800

#define cycleSize 1600

// USER DEFINED ROUTINES *********************************************

void user_init(int,int);

void user_interface(void);

void user_task(void);

void user_terminate(void);

void user_abort(void);

void newbreak_start(void);

void newtask_init(void);
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void terminate(void);

void newbreak_stop(void);

void newtask_start(void);

void out(float,int,int);

void start_AD(int);

void write_data(void);

void read_data(void);

void get_parameters(void);

void set_xy_scale(float,float);

void zero_outputs(void);

void get_offsets(void);

void cycle_x(int);

void cycle_y(int);

float in(int);

int countdown, delay_count;

int lobyte, hibyte;

// USER VARIABLES GOES HERE ***************************************

float huge *z;

unsigned long zSize = 114010; /* max size for memory allocation */

unsigned long ix = 0; /* start of first block */

unsigned long iz = 57000; /* start of third block */

unsigned long ip = 114000; /* start of last block for storing param. */

unsigned long istop = 57000; /* index to stop */

unsigned long int_count, k, Np;

int done, Nrev, freq;

float xScale, yScale, ux, uy, vosx, vosy;

float cycle_data[cycleSize];
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char cyclefile[]="cycle.in";

char infile[80];

char outfile[80];

// MAIN PROGRAM *******************************************

void main(void){

/* allocate memory for z-data array using farcalloc */

z = (float huge *)farcalloc(zSize,sizeof(float));

if (z == NULL){

printf("Not enough memory to store z-data\n"); exit(1);

}

// clear z[] vector by assigning all elements zero value

for(k=0;k<zSize;k++){ z[k] = 0.0; }

printf("Enter INPUT file: "); gets(infile);

printf("Enter OUTPUT file: "); gets(outfile);

printf("Enter xScale:"); scanf("%f",&xScale);

printf("Enter yScale:"); scanf("%f",&yScale);

read_data();

get_parameters();

set_xy_scale(xScale,yScale);

printf("Sampling freq: %d Hz\n",freq);

done = 0;

int_count = 0;

user_init(board1,N_CHAN_1);

//user_init(board2,N_CHAN_2);

zero_outputs();
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printf("Press any key to CYCLE system\n"); getch();

printf("Cycling....");

cycle_x(1); cycle_y(1);

printf("Cycling complete!\n");

delay(500); get_offsets();

newtask_init();newbreak_start(); newtask_start();

while(!done){

user_interface();

}

zero_outputs();

terminate();

write_data();

zero_outputs();

}

void user_task(void) {

ux = z[ix + int_count];

uy = z[iz + int_count];

out(ux,board1,DAC0);

out(uy,board1,DAC1);

//start_AD(board1); in(board1); /* PIN 3 */

start_AD(board1); z[iz + int_count] = in(board1);

/* PIN 3 */

start_AD(board1); in(board1) - vosy; /* PIN 2 */

//start_AD(board1); z[ix + int_count] = in(board1) - vosy;

/* PIN 2 */

//start_AD(board1); in(board1) - vosx; /* PIN 1 */

start_AD(board1); z[ix + int_count] = in(board1) - vosx;

/* PIN 1 */
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int_count++;

if (int_count >= istop){

done = 1; int_count = Np - 1;

}

}

void user_interface(void){

printf("%u\n", int_count);

}

void read_data(void){

FILE *fp1;

float temp1;

unsigned long i;

if((fp1=fopen(infile,"r"))==NULL){

perror("Error opening input file!!");

exit(EXIT_FAILURE);

}

for(i=0;i<zSize;i++){

fscanf(fp1,"%f\n",&temp1);

z[i]=temp1;

}

fclose(fp1);

printf("Acquired INPUT DATA file %s!\n",infile);

}

void get_parameters(void){

Np = 57000; /* total number of points */

Nrev = 220; /* total number of revolutions */

freq = 220; /* sampling frequency for 1hz scanning */

z[ip + 2] = freq; /* store sampling frequency */

z[ip + 3] = xScale; /* save xScale */

z[ip + 4] = yScale; /* save yScale */
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}

void set_xy_scale(float xS, float yS){

unsigned long i;

for (i=0; i<57000; i++){

z[ix + i] = xS*z[ix + i];

z[iz + i] = yS*z[iz + i];

}

}

void zero_outputs(void){

out(0.0,board1,DAC0);out(0.0,board1,DAC1);

// out(0.0,board2,DAC0);out(0.0,board2,DAC1);

}

void get_offsets(void){

start_AD(board1); in(board1); /* PIN 3 */

start_AD(board1); vosy = in(board1); /* PIN 2 */

start_AD(board1); vosx = in(board1); /* PIN 1 */

printf("Offsets acquired.\n");

}

void cycle_x(int uN){

int i,j;

float temp1;

FILE *fp3;

if((fp3=fopen(cyclefile,"r"))==NULL){

perror("Error opening Cycle Data File!");

exit(1);

}

else{

for(i=0;i<cycleSize;i++){

fscanf(fp3,"%f\n",&temp1);

cycle_data[i]=temp1*5.0;
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}

}

fclose(fp3);

for(i=0;i<uN;i++){

for(j=0;j<cycleSize;j++){

out(cycle_data[j],board1,DAC0);

delay(20);

printf("Cycle x [%d, %d]\n",i,j);

}

}

zero_outputs();

}

void cycle_y(int uN){

int i,j;

float temp1;

FILE *fp4;

if((fp4=fopen(cyclefile,"r"))==NULL){

perror("Error opening Cycle Data File!");

exit(1);

}

else{

for(i=0;i<cycleSize;i++){

fscanf(fp4,"%f\n",&temp1);

cycle_data[i]=temp1*5.0;

}

}

fclose(fp4);

for(i=0;i<uN;i++){

for(j=0;j<cycleSize;j++){

out(cycle_data[j],board1,DAC1);
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delay(20);

printf("Cycle y [%d, %d]\n",i,j);

}

}

zero_outputs();

}

void write_data(void){

unsigned long i;

FILE *fp2;

if((fp2=fopen(outfile,"w"))==NULL){

printf("Error opening %s!! No data saved!\n",outfile);

}

else{

for (i=0;i<zSize;i++){

fprintf(fp2,"%f\n",z[i]);

}

printf("Done writing OUTPUT DATA to %s\n",outfile);

fclose(fp2);

}

}

// ***************************************************

// DO NOT MODIFY BELOW

// Routines to change the interrupt rate of the timer

// and to redirect the timer processing

// ***************************************************

void (interrupt *oldtask) (void);

void interrupt newtask(void) {

user_task();

outp(0x20,0x20);}
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void newtask_init(void) {

countdown=(int)(1193180./freq);

hibyte=(int)(countdown/256);

lobyte=countdown-hibyte*256;

}

void newtask_start(void) {

disable();

oldtask=getvect(interrupt_loc);

outp(0x43,0x36); outp(0x40,lobyte); outp(0x40,hibyte);

setvect(0x08,newtask);

enable();

}

void newtask_stop(void) {

disable();

setvect(interrupt_loc,oldtask);

outp(0x43,0x36); outp(0x40,0); outp(0x40,0);

enable();

}

/* Routines to redirect the Ctrl-Break processing */

void (interrupt *oldbreak) ();

void interrupt newbreak(void) {

newtask_stop(); newbreak_stop(); outp(0x20,0x20);

user_abort(); exit(1);

}

void newbreak_start (void) {

disable();

oldbreak=getvect(0x23); setvect(0x23,newbreak);

enable();

}

void newbreak_stop(void) {
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disable();

setvect(0x23,oldbreak);

enable();

}

void terminate(void) {

newtask_stop(); newbreak_stop(); outp(0x20,0x20);

user_terminate(); /*exit(1);*/

}

void user_init(int base,int no_chan_DA) {

outp(base+0x01,0x34); /* Initialize Command Register 2 */

outp(base+0x02,0x00); /* Initialize Command Register 3 */

outp(base+0x0F,0x00); /* Initialize Command Register 4 */

outp(base+0x04,0x00); /* Initialize D/A’s */

outp(base+0x05,0x08);

outp(base+0x06,0x00);

outp(base+0x07,0x08);

outp(base,0x08+no_chan_DA-1);

/* Write to command register 1 */

/* to set channel and gain */

if(no_chan_DA>1){

outp(base,0x08+no_chan_DA-1+0x80);

}

/* Start A/D conversion */

outp(base+0x17,0x34); /* Select Counter A0, Mode 2 */

/* Force A0 high */

outp(base+0x08,0x00); /* Write to A/D Clear Register */

while(inp(base)%2){

inp(base+0x0A); /* Clear A/D */

inp(base+0x0A);

}
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}

void user_abort(void) {

int i;

out(0,board1,DAC0);

out(0,board1,DAC1);

// out(0,board2,DAC0);

// out(0,board2,DAC1);

printf("User Abort -- Program Terminated. Bye!\n");

//write_data();

}

void user_terminate(void) {

printf("Done Collecting Data\n");

}

void out(float voltage,int base,int chan){

long msb, lsb, dacout;

if(voltage > 4.9976) {voltage=4.9976;}

if(voltage < -5.) {voltage=-5.;}

dacout=(int)(voltage/vmax*2048);

if(voltage<0) {dacout=65536+dacout;}

msb=(int)(dacout/256);

lsb=dacout-msb*256;

outp(base+chan,lsb);

outp(base+chan+0x01,msb);

}

float in(int base){

long ADin,msb,lsb;

float involtage;

int status;

status=1;

while(status){
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if(inp(base)%2){ /* Check status Register */

/* Read A/D Conversion */

lsb=inp(base+0x0A); /* Read low Byte */

msb=inp(base+0x0A); /* Read high Byte */

ADin=msb*256+lsb;

if(ADin>2047) {ADin=ADin-65535;}

involtage=(float)(ADin)/2048*vmax;

status=0;

}

}

return involtage;

}

void start_AD(int base){

outp(base+0x03,0x00);/* Start convert register */

}
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