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a b s t r a c t

The positioning performance of piezo-based nanopositioning systems is limited by dynamic and hyster-
esis effects in the piezoactuator. Herein, a high-performance, dual-stage repetitive controller (dual-RC)
with a feedforward hysteresis compensator is proposed for tracking periodic trajectories, such as the
scanning-type motion, in nanopositioning systems. Firstly, a discrete-time dual-RC is created by cascad-
ing a conventional RC with an odd-harmonic RC. The favorable gain characteristics of the dual-RC coin-
cide with the odd harmonics of the scanning-type periodic reference trajectory, thus offering good
robustness and low tracking error. Secondly, a new inverse-hysteresis compensator is developed based
on the Prandtl–Ishlinskii hysteresis model. The structure of the inverse model mimics the structure of
the forward model, where the parameters of the inverse model can be easily identified from measured
input–output data. Finally, the controllers are applied to a custom-designed high-speed nanopositioner,
and simulations and experimental results are provided to illustrate the performance improvement of the
proposed control scheme compared to industry-standard PID control and conventional RC. High-speed
positioning results (tracking of triangle scan trajectories) at rates of 1 kHz, 1.5 kHz, and 2 kHz are shown.
Compared to a conventional RC, the tracking error of the dual-RC is 48% lower at 1 kHz and 33% lower at
2 kHz scanning frequency. It is also shown that by compensating for hysteresis, the performance of the RC
system designed based on the linear dynamics can be enhanced.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-axis piezo-based nanopositioners are critical tools for
emerging and enabling nanotechnology applications, such as
scanning probe microscopes (SPMs). Often times, these nanoposi-
tioners are required to track periodic reference trajectories with
precision. For example, in an atomic force microscope (AFM), a
type of SPM, a nanopositioner is used to precisely position a tool
tip relative to a sample surface to obtain high-resolution topo-
graphical images, directly measure various properties of a speci-
men, and even investigate nano-scale dynamic interactions in
real time [1–3]. However, the response of the piezoactuator
exhibits hysteresis and dynamic effects, the latter being creep
and vibration, which make controlling the piezoactuator’s move-
ments a challenge. Precision control of the piezoactuator is
needed to hold the SPM-probe tip at a desired location or to track
a desired motion trajectory, such as the scanning trajectory in
AFM imaging or nanofabrication. In SPM-probe-based nanofabri-
cation, precise position control of the indenter tip is needed be-
cause the probe position error directly affects the size, spacing,
ll rights reserved.

: +1 775 784 1701.
and distribution of the nanofeatures. Even variations in the probe
position of a few nanometers can drastically affect the resulting
size and spacing of the nanofeatures created with the probe tip.
Moreover, high-speed control of the probe’s movement is needed
for high throughput fabrication, imaging, and metrology. Without
precise motion control at high-speed, oscillations can cause the
tip to collide with nearby features, which leads to excessive tip-
to-sample forces. The large forces can damage, for example, the
probe or soft specimens such as live cells. The main contribution
of this paper is the development of a dual-stage repetitive con-
troller combined with a new inverse-hysteresis compensator to
track periodic trajectories in piezo-based nanopositioning sys-
tems. The control approach is well suited for scanning-type appli-
cations where the desired motion is periodic in time and
dominated by odd harmonics.

Repetitive control is a direct application of the internal model
principle [4], where a signal generator is incorporated into a feed-
back loop to provide high gain at the fundamental frequency of the
reference trajectory and its harmonics [5,6]. Recently, the RC
approach was studied for scanning applications in piezo-based
AFMs [7]. Repetitive controllers have also been used to address
run-out issues in disk drive systems [8,9] and to improve the
performance of machine tools [10,11]. Compared to traditional
proportional-integral or proportional–integral–derivative (PID)
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Fig. 1. (a) A conventional RC system, where the R(z) represents a periodic reference
trajectory, Y(z) is the system output, Gc(z) is the controller and G(z) is the plant
dynamics. (b) An odd-harmonic RC with a linear phase-lead compensator
P2ðzÞ ¼ zm2 and a RC gain krc to enhance performance. (c) An equivalent block
diagram of (b) for stability analysis.
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feedback controllers, where careful tuning is required and the
residual tracking error persists from one operating cycle to the
next, RC has the ability to reduce the error as the number of oper-
ating cycles increases. For applications in which the desired trajec-
tory is periodic and the signal period is known a priori, a repetitive
controller offers many advantages. Firstly, it can be plugged into an
existing feedback control loop to enhance performance for scan-
ning applications. Secondly, compared to iterative learning control
(ILC) [12,13], a control method that has been used extensively for
piezo-based positioning systems [14,15], RC does not require the
initial condition to be reset at the start of each iteration trial [6].
Therefore, the implementation is simplified. Thirdly, compared to
model-based feedforward approaches [16,17], RC does not require
extensive modeling of the system. Due to variations in the system
dynamics, for example those caused by aging [18] or temperature
variations [19], open-loop feedforward approaches often lack
robustness. On the other hand, the feedback mechanism built into
RC provides robustness to parameter variation. Finally, RC can be
easily implemented digitally, and thus high-speed data acquisition
and control hardware such as field-programmable gate array sys-
tems [20] can take advantage of the RC structure for precision
control.

The challenges with designing and implementing RC include
stability, robustness, and achieving good steady-state tracking per-
formance. One solution to the stability and robustness problem is
to incorporate a low-pass filter into the RC loop [21] or employ a
simple frequency aliasing filter [22]. It is pointed out that a tradeoff
is made between robustness and high frequency tracking when
such filters are used. The steady-state tracking performance of RC
can be improved, for example, by cascading a phase-lead compen-
sator to account for the phase lag of the low-pass filter to increase
the controller gain at the harmonics of the reference trajectory
[23,7]. High-order RC has been studied in [9] to improve perfor-
mance and robustness in the presence of noise and variations in
the signal period.

The work on the design of RC for systems which exhibit dynamic
and hysteresis effects is limited. Herein, a high-performance, dual-
stage repetitive controller (dual-RC) with a feedforward hysteresis
compensator is proposed for systems like piezo-based nanoposi-
tioners. Firstly, the design of the dual-RC is motivated by the need
to further reduce the magnitude of the sensitivity function of the
closed-loop system to help lower the tracking error. This is achieved
by cascading a conventional RC with an odd-harmonic RC [24,25],
effectively ‘squaring’ the controller. This structure not only lowers
the tracking error compared to conventional RC, but also offers
good robustness for tracking odd-harmonic trajectories. It is noted
that a similar dual-RC structure has been studied in [26], where two
identical RCs are cascaded together (series connection); and a
parallel configuration is presented in [24,25]. In contrast, the
proposed dual-RC cascades an enhanced conventional RC with an
odd-harmonic RC, and the series configuration is specifically
tailored for tracking periodic scanning trajectories such as triangle
signals with odd harmonics. Such reference signals are commonly
used in piezo-based nanopositioners for raster-type and scanning
applications, like AFM imaging. To assist a designer in choosing
the controller parameters for optimum performance, the stability
analysis for the dual-RC is presented.

Secondly, the hysteresis behavior in the piezoactuator is ac-
counted for using a new inverse-hysteresis feedforward controller.
Hysteresis compensation is critical because the effect, if left unac-
counted for, can affect the system stability [27,28]. The hysteresis
compensator is based on the Prandtl–Ishlinskii model, a phenome-
nological model for hysteresis where the output is a superposition
of weighted play or stop operators [29–31]. To create the inverse
model, a new play-type operator is proposed which is motivated
by the shape of the hysteresis curve. The new operator enables
the development of an inverse model that takes the same form
as the forward P-I model, and importantly, the parameters of the
inverse model are determined from the measured hysteresis curve
using the same technique as the forward model. Compared to other
models for hysteresis such as polynomial models [32], the Bouc–
Wen model [33,34], the Duhem model [35,36], the Maxwell slip
model [37], and the Preisach model [38–41], the P-I model can
accurately model symmetric hysteresis loops with a smaller set
of parameter, and thus the model inversion is more efficient and
less computationally demanding for real-time feedforward control.
It is pointed out that charge control [42,46] can be used in place of
the hysteresis compensator, but this approach requires a special-
ized charge-control circuit. The main contribution of this paper is
the design and analysis of a new dual-RC combined with a new
hysteresis feedforward compensator to improve the performance
of piezo-based nanopositioning systems for scanning-type applica-
tions. Simulation and experimental results are presented to dem-
onstrate the effectiveness of the control approach.

The remainder of the paper is organized as follows. Section 2
presents the dual-RC design and stability analysis. Section 3 dis-
cusses the hysteresis modeling and the inverse hysteresis compen-
sator design. Section 4 describes the experimental system and the
dynamics and hysteresis modeling. Section 5 describes the control-
ler design, simulation, and experimental results. Finally, Section 6
concludes the paper.
2. Design of repetitive control for periodic trajectory tracking

Repetitive control is a feedback-based approach suited for
tracking periodic trajectories and/or for rejecting periodic distur-
bances. To do this, an RC provides large gain at the harmonics of
the reference trajectory by incorporating a signal generator with-
in the feedback loop [7–9]. For piezo-based nanopositioning sys-
tems, the RC must be designed for low tracking error in the
presence of dynamic and hysteresis effects. To aid in designing
the RC, the dynamic and hysteresis effects in a piezoactuator is
described by a cascade model (see system block in Fig. 1a)
[43]. The hysteresis behavior is captured by a rate-independent
input nonlinearity H½�� and the output of this nonlinearity be-
comes the input that drives a linear dynamics model G(s) which
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represents the structural dynamics and creep behavior. Moti-
vated by this model structure, a high-performance RC is designed
to first handle the linear dynamics G(s). Then the (nonlinear)
hysteresis behavior is compensated for using a new inverse-hys-
teresis feedforward controller incorporated into the loop gain.
One of the distinct advantages of this control structure is the
RC can be designed using linear techniques, namely because
the nonlinearity is accounted for leaving behind a linearized
plant G(s). That way the RC design is decoupled from the hyster-
esis compensation, simplifying the controller design. Next, a con-
ventional RC is introduced, followed by an enhanced dual-RC for
improving tracking performance and robustness.

2.1. Conventional RC Design

A conventional discrete-time RC for the linear system G(z) is
shown in Fig. 1a. The RC consists of a pure delay z�N inside of a
positive-feedback loop, where N ¼ Tp=Ts 2 N is the number of
points per period Tp of the reference trajectory R(z) and Ts is
the sampling time. A low-pass filter Q(z) is added to the RC loop
for stability, while a linear phase-lead compensator P1ðzÞ ¼ zm1 ,
where m1 is a non-negative integer, is added to improve the
tracking performance. The phase-lead compensator P1(z) gener-
ates a linear phase lead h1(x) = m1Tsx. The RC gain, krc, is used
to control the performance and error convergence of the RC. A
traditional feedback controller, such as a PID controller, is repre-
sented by Gc(z). In this work, it is assumed that the feedback con-
troller is part of the closed-loop and the RC is ‘plugged’ into the
existing closed-loop to further enhance performance. Setting
z ¼ ejxTs , the complimentary sensitivity function of the closed-
loop system without the RC is

TðejxTs Þ ¼ G0ðejxTs Þ
1þ G0ðejxTs Þ ¼ AðxÞejhT ðxÞ; ð1Þ

with A(x) > 0, for x 2 (0, p/Ts). The RC system shown in Fig. 1(a) is
stable if the RC gain and the phase delay of the closed-loop system
(without the RC) satisfy:

0 < krc <
2 cos½hTðxÞ�

AðxÞ and � p=2 < hTðxÞ < p=2: ð2Þ

The RC system described above Fig. 1a has been applied to track
periodic trajectories in piezo-based SPMs [7]. However, the track-
ing performance is limited by the low-pass filter Q(z). In the fol-
lowing, an enhanced dual-stage RC is proposed to further reduce
the tracking error for precision positioning.

2.2. Dual-stage RC design

The tracking performance of the conventional RC system shown
in Fig. 1a is governed by the sensitivity function
(a)

(b)

Fig. 2. (a) A dual-stage RC design consisting of a conventional RC (C1) cascaded with an od
SrcðzÞ ,
EðzÞ
RðzÞ ¼

½1� H1ðzÞ�SðzÞ
1� H1ðzÞ½1� krcG0ðzÞSðzÞ�

; ð3Þ

where H1ðzÞ ¼ QðzÞz�Nþm1 and S(z) = 1/[1 + G0(z)] is the sensitivity
function of the feedback system without the repetitive controller.
One approach to improve the tracking performance of the conven-
tional RC is to reduce the magnitude of Src by cascading two signal
generators, effectively producing a squaring effect [26]. It is noted,
however, that the reference trajectories used in the scanning oper-
ation in SPMs are typically odd-harmonic signals (e.g., triangle tra-
jectories). Therefore, it is preferred that an odd-harmonic RC [24,25]
as depicted in Fig. 1b be cascaded with a conventional RC as shown
in Fig. 2a, instead of cascading two conventional RCs. By doing this,
the resultant sensitivity function is

eSrcðzÞ ¼
½1� H1ðzÞ�½1� H2ðzÞ�

WðzÞ þ ½1� H1ðzÞð1� k1Þ�½1� H2ðzÞð1� k2Þ�G0ðzÞ
; ð4Þ

where W(z) = [1 � H1(z)][1 � H2(z)] and H2ðzÞ ¼ �z�
N
2þm2 QðzÞ. The

advantage of this enhanced dual-RC design over cascading two con-
ventional RCs together is added performance and robustness. Cas-
cading two conventional RCs together results in excessive gain at
the even harmonics which can degrade the system’s performance
for tracking odd-harmonic reference trajectories [44]. The perfor-
mance of the enhanced dual-RC is illustrated by comparing the
magnitude response of the sensitivity function eSrcðzÞ in Eq. (4) to
the magnitude response of the sensitivity function Src(z) of the
conventional RC in Eq. (3) and the sensitivity function SrcðzÞ of the
odd-harmonic RC in Fig. 1b, given by

SrcðzÞ ¼
½1� H2ðzÞ�SðzÞ

1� H2ðzÞ½1� krcG0ðzÞSðzÞ�
: ð5Þ

The comparison of the three RC configurations is shown in
Fig. 3, where the frequency response functions are generated in
Matlab using the ‘margin’ command using N = 100, m1 = m2 = 0,
Q(z) = 1, and Ts = 10 ls as an illustrative example. The results reveal
that the odd-harmonic RC has little affect on the even-harmonics
compared to the conventional RC (gain at first even harmonic:
�13.7 dB for conventional RC, 4.49 dB for odd-harmonic RC, and
�8.69 dB for dual-RC). Instead, the magnitude of the sensitivity
function for the dual-RC is significantly lower than the conven-
tional RC at the odd-harmonics (�24.4 dB for conventional RC ver-
sus �47.1 dB for dual-RC at the first odd harmonic), but it is close
to the conventional RC at the even-harmonics. This implies that (1)
the odd-harmonic RC has the same tracking performance as the
conventional RC for tracking odd-harmonic trajectories but it
provides the system with more robustness by reducing the gain
at the even harmonics, which effectively minimizes the amplifica-
tion of signals in that frequency range, such as noise and (2) the
dual-RC provides higher gain than the conventional RC at the
odd-harmonics; therefore, the dual-RC will improve the tracking
d-harmonic RC (C2) and (b) the equivalent block diagram of (a) for stability analysis.
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Fig. 3. Comparison of magnitude versus frequency plots for the sensitivity
functions for different RC configurations, where Src(z) denotes the conventional
RC (solid line), SrcðzÞ is for the odd-harmonic RC (dash line), and eSrcðzÞ represents the
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of trajectories with odd-harmonics. The stability analysis of the
odd-harmonic RC and the enhanced dual-RC is discussed in the
following.

2.3. Stability analysis

The stability of the RC system is analyzed using the Small Gain
Theorem [45].

2.3.1. Stability analysis of the odd-harmonic RC
Let Ts be the sampling time. Consider the odd-harmonic RC

shown in Fig. 1b and the following assumptions:

Assumption 1. The reference trajectory R(z) is periodic in time
with period Tp.
Assumption 2. The closed-loop system without the RC is asymp-
totically stable, i.e., 1 + G0(z) = 0 has no roots outside of the unit cir-
cle in the z-plane.

The main result for the stability conditions for the odd-har-
monic RC is provided in the following theorem:

Theorem 1 (Stability of odd-harmonic RC). Let Assumptions 1 and 2
hold. If jQðejxTs Þj 6 1 and

0 < krc <
2 cos½hTðxÞ�

AðxÞ and � p=2 < hTðxÞ < p=2; ð6Þ

for x 2 (0, p/Ts), then the RC feedback system shown in Fig. 1b is
asymptotically stable.
Proof. First, the RC block diagram in Fig. 1b is simplified to the
equivalent interconnected system shown in Fig. 1c. Since
1 � H2(z) and S(z) are stable, then the RC system in Fig. 1b is
asymptotically stable when

z�
N
2þm2 QðzÞ½krcG0ðzÞSðzÞ � 1�

��� ��� < 1: ð7Þ

Noting that z ¼ ejxTs ; jQðejxTs Þj 6 1, and the complimentary sen-
sitivity function of the closed-loop system without the RC is given
by Eq. (1), condition (7) is satisfied if

jkrcAðxÞejhT ðxÞ � 1j < 1: ð8Þ

Letting ejh = cos (h) + jsin (h) and krc > 0, Eq. (8) gives

�2krcAðxÞ cos½hTðxÞ� þ k2
rcA2ðxÞ < 0; ð9Þ

hence

0 < krc <
2 cos½hTðxÞ�

AðxÞ and � p=2 < hTðxÞ < p=2:

This completes the proof. h
The results of Theorem 1 states that within an acceptable oper-
ating frequency range, there exists a sufficiently small RC gain krc

such that the closed-loop RC system is stable. Next, the stability
conditions for the dual-RC, created by cascading an odd-harmonic
RC with the conventional RC, is presented.

2.3.2. Stability analysis of the enhanced dual-RC
Consider the enhanced dual-RC system shown in Fig. 2a and

Assumptions 1 and 2 from above. The stability conditions are sum-
marized in the following theorem.

Theorem 2 (Stability of enhanced dual-RC). Let Assumptions 1 and 2
hold. If jQðejxTs Þj 6 1 and

3 cos½hTðxÞ� � D
3AðxÞ < k1; k2

< 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 cos½hTðxÞ� þ D

3AðxÞ

s
;

� p=9 6 hTðxÞ 6 p=9; ð10Þ

with D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 cos2½hTðxÞ� � 8

p
for x 2 (0, p/Ts), then the closed-loop

system in Fig. 2a is asymptotically stable.
Proof. First, recall that if a; b; c; d 2 C, where C is the set of all com-
plex numbers, and jaj 6 1, jcj 6 1 and jbj + jdj 6 1, then
jajjbj + jcjjdj 6 1. Now the sensitivity function in Eq. (4) is modified
to

eSrcðzÞ ¼
½1� H1ðzÞ�½1� H2ðzÞ�SðzÞ

1� ½H1ðzÞk1ðzÞ þ H2ðzÞk2ðzÞ � H1ðzÞH2ðzÞk3ðzÞ�SðzÞ
; ð11Þ

where k1(z) = 1 + (1 � k1)G0(z), k2(z) = 1 + (1 � k2)G0(z), and
k3(z) = 1 + (1 � k1)(1 � k2)G0(z). The RC system in Fig. 2a is con-
verted to the equivalent interconnected system shown in Fig. 2b.

Then, according to Fig. 2b and the Small Gain Theorem, the
dual-RC system is internally stable when

j½H1ðzÞk1ðzÞ þ H2ðzÞk2ðzÞ � H1ðzÞH2ðzÞk3ðzÞ�SðzÞj < 1; ð12Þ

with 1 � H1(z) and 1 � H2(z) designed stable. Applying the triangle
inequality and noting that jH1(z)j 6 1 and jH2(z)j 6 1,

j½H1ðzÞk1ðzÞ þ H2ðzÞk2ðzÞ � H1ðzÞH2ðzÞk3ðzÞ�SðzÞj
6 jk1ðzÞSðzÞj þ jk2ðzÞSðzÞj þ jk3ðzÞSðzÞj: ð13Þ

Then Eq. (12) is satisfied if

jk1ðzÞSðzÞj þ jk2ðzÞSðzÞj þ jk3ðzÞSðzÞj < 1: ð14Þ

Noting that T(z) = G0(z)S(z) and replacing z ¼ ejxTs , the gains ki

with i = 1, 2 can be determined from Eq. (14) as follows:
First, if jk3(z)j 6 jki(z)j Eq. (14) can be simplified to

jk1ðzÞSðzÞj þ jk2ðzÞSðzÞj þ jkiðzÞSðzÞj <
3jk1ðzÞSðzÞj < 1; 8k1 6 k2

3jk2ðzÞSðzÞj < 1; 8k2 6 k1

�
;

thus

3j1� kiTðejxTs Þj < 1; ki ¼maxðk1; k2Þ: ð15Þ

Second, if jk3(z)jP jki(z)j, then

3j1� ð2ki � k2
i ÞTðejxTs Þj < 1: ð16Þ

Third, if j kjðzÞ j6j k3ðzÞ j6j kiðzÞ j; j–i; j 2 f1; 2g; i 2 f1; 2g, Eq.
(14) can also be simplified to

j k1ðzÞSðzÞ j þ j k2ðzÞSðzÞ j þ j kiðzÞSðzÞ j<
3 j k1ðzÞSðzÞ j<1; 8 k16 k2

3 j k2ðzÞSðzÞ j<1; 8 k26 k1

�
;
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Fig. 5. P-I hysteresis model: (a) The play operator with threshold ci. (b) An example
output versus input plot for the Prandtl–Ishlinskii hysteresis model for a piezoac-
tuator. (c) Inverse hysteresis curve: input versus output plot. (d) A play-type
operator for the inverse model with threshold c0i. (e) Time response comparing the
desired response (solid line), hysteresis response (dash-dot line), and inverse
hysteresis output (dash line).
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thus

3 j 1� kiTðe jxTsÞ j< 1; ki ¼maxðki; k2Þ: ð17Þ

Therefore, the gains are found by solving Eqs. (15)–(17), i.e.,

3 cos½hTðxÞ� � D
3AðxÞ < k1; k2 < 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 cos½hTðxÞ� þ D

3AðxÞ

s
;

� p=9;6 hTðxÞ 6 p=9;

with D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 cos2½hTðxÞ� � 8

p
. This completes the proof. h

By satisfying the conditions in Theorem 2, that is, by picking
appropriate values for the RC gains, k1 and k2, within a particular
operating frequency range, the dual-RC is guaranteed stable. Next,
a new inverse-hysteresis compensator is proposed to handle the
hysteresis effect.

3. Hysteresis compensation: the Prandtl–Ishlinskii (P-I)
hysteresis model

The proposed dual-RC design assumes that the piezoactuator
dynamics are linear; however, it is a well-known fact that hyster-
esis behavior is significant in piezo-based nanopositioning systems
[17,16]. It has been noted that the nonlinearity can affect closed-
loop stability if not accounted for [27,28]. Rather than deal with
the hysteresis effect directly by designing a nonlinear RC, a task
that is complex, instead a feedforward hysteresis compensator is
proposed to minimize the effect. This way, the RC controller can
be redesigned as needed using linear control techniques and thus
be decoupled from the design of the hysteresis compensator. As
pointed out, for piezo-based nanopositioning systems, the dynamic
and hysteresis effects in a piezoactuator is described by a cascade
model [43]. The range-dependent hysteresis effect of the piezoac-
tuator is treated as a rate-independent input nonlinearity H½��
and an inverse-hysteresis controller is proposed based on the Pra-
ndtl–Ishlinskii (P-I) hysteresis model and a new play-type hyster-
esis operator. Some of the advantages of the P-I model compared
to other hysteresis models (such as the Preisach model) is smaller
number of parameters for more efficient on-line implementation.
The control structure is shown in Fig. 4, where the feedforward
compensator appears before the piezoactuator system to compen-
sate for hysteresis.

3.1. The Prandtl–Ishlinskii hysteresis model

The Prandtl–Ishlinskii model is an operator-type, phenomeno-
logical model for rate independent hysteresis behavior; it has re-
cently been investigated to model hysteresis in piezoactuators
[29–31]. The model’s output v(t) is a weighted superposition of ele-
mentary hysteresis operators, play or stop operators [29], as shown
in Fig. 5a. Let the input uðtÞ 2 Cm½ta; tb�, where Cm½ta; tb� represents
the space of piecewise monotone continuous functions defined
over time period ft : ta 6 t 6 tb; 0 6 a 6 b 2 Ng. Specifically, the
play operator is defined as

Pr ½u�ð0Þ ¼ prðf ð0Þ;0Þ ¼ 0;

Pr ½u�ðtÞ ¼ prðf ðtÞ;Pr ½f �ðtÞÞ;
ð18Þ
Fig. 4. The dual-RC closed loop system with
where prðf ðtiÞ;Pr ½f �ðtiÞÞ ¼maxðf ðtiÞ � c;minðf ðtiÞ þ c; Pr½f �ðti�1ÞÞÞ;
f ðtÞ ¼ g0uðtÞ þ g1 with constants g0 and g1, and c is the input
threshold [29]. The output v(t) of the P-I model is defined as

vðtÞ ¼ H½u�ðtÞ , f ðtÞ þ
Z R

0
dðcÞPr½u�ðtÞdc; ð19Þ

where d(c) is the density function that controls the shape and size
of the hysteresis curve. Fig. 5a shows an example of play operators
with threshold ci, for i = 1, 2, 3, and Fig. 5b is an example output ver-
sus input (hysteresis) plot for the P-I model. The parameters of the
P-I model can be determined experimentally and this process is de-
scribed below in Section 4.3.
3.2. An inverse hysteresis feedforward compensator

To compensate for the hysteresis behavior, an inverse P-I model
is proposed. The characteristics of the inverse model is based on
the characteristic shape of the inverse hysteresis curve, that is,
the input versus output curve shown in Fig. 5c (u versus v plot).
It is noted that as the output v increases, the input u increases
but traverses onto an upper branch of the inverse-hysteresis
curve. In contrast, this behavior is opposite to that observed in
feedforward hysteresis compensator.



Fig. 6. The serial-kinematic three-axis nanopositioning system.
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the hysteresis curve (v versus u plot) where the output climbs up
on a lower branch as shown in Fig. 5b. Therefore, a candidate
play-type operator for the inverse-hysteresis model is shown in
Fig. 5d. Fig. 5e compares the time responses between the desired
output (solid line), output from a hysteretic system (dash-dot line),
and the output from the proposed inverse-hysteresis model (dash
line). Using this operator offers the advantage that the structure of
the forward model can be used directly to map the desired output
to the hysteresis-compensating feedforward input. In other words,
the P-I output Eq. (19) becomes the inverse map simply by setting
the output equal to the input and vice versa. It is noted that the
input–output response for the inverse model shown in Fig. 5c is
a reflection of Fig. 5b about the axis u = v. Therefore, the inverse
operator shown in Fig. 5d is defined as

Pr0 ½v�ð0Þ ¼ �pr0 ðhð0Þ;0Þ ¼ 0;

Pr0 ½v�ðtÞ ¼ �pr0 ðhðtÞ; Pr0 ½h�ðtÞÞ;
ð20Þ

where �pr0 ðhðtiÞ; Pr0 ½h�ðtiÞÞ ¼ maxð�hðtiÞ � c0; minð�hðtiÞ þ c0; Pr0

½h�ðti�1ÞÞÞ, hðtÞ ¼ g00vðtÞ þ g01 with constants g00 and g01, and v(t)
is the output of the hysteresis behavior. The term c0 denotes
the threshold of the proposed inverse play operator. Using this
proposed inverse play-type operator, the output of the inverse-
hysteresis model is given by

H�1½v �ðtÞ , hðtÞ þ
Z R

0
dinvðc0ÞPr0 ½v �ðtÞdc0; ð21Þ

where dinv(c0) is the density function of the inverse P-I model. The
performance of the inverse P-I hysteresis compensator is validated
in simulations and experiments on a custom-designed high-speed
nanopositioning stage described below.

4. The experimental nanopositioning system and modeling

The control approach is evaluated on a new custom-made,
three-axis, flexure-guided serial-kinematic nanopositioning sys-
tem. The experimental system is shown in Fig. 6 and the design
of a similar stage is described in [49] for the interested reader.
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Fig. 7. Measured frequency response of nanopositioning
The serial-kinematic configuration is specifically created for scan-
ning-type applications. For scanning-type applications, such as
the rastering movements in AFM imaging, one lateral axis moves
much faster (>100-times) than the other axis. Because of this,
one axis is designed to have a significantly higher mechanical res-
onance [3,47]. Compliant double-hinged flexures are used to guide
the lateral stages in their corresponding actuation directions while
limiting out-of-plane (parasitic) motion and dynamic cross cou-
pling. The high-speed (HS) x-stage and the low-speed (LS) y-stage
use stiff plate-stack piezoactuators (5 � 5 � 10 mm Noliac
SCMAP07) configured serially to provide lateral displacement.
Not shown are the details of the z-stage, in which a piezo-stack
is embedded into the x-stage body and the free ends secured with
plate flexures, where a similar design is described in [48]. The stage
is outfitted with inductive sensors (Kaman SMU9000-15N) to mea-
sure the displacement in the lateral directions. The lateral (x/y)
range of motion is determined to be approximately 10 � 10 lm.

The first mechanical resonance for the high-speed x- and low-
speed y-stage is 11.10 kHz and 4.68 kHz, respectively. The mea-
sured frequency responses of the stage are shown in Fig. 7. The re-
sults show that the dominant resonances are second-order in
nature, and they are actuation modes.
4.1. Control hardware

The experimental system consists of a field-programmable gate
array (FPGA) real-time controller with data acquisition modules,
the nanopositioner, piezo amplifier, and inductive displacement
sensors as shown in Fig. 8. Also, a desktop computer with a data
acquisition card (NI-PCI-6221, 16-bit, maximum sampling fre-
quency 250 kHz) is used to send reference signals to the FPGA con-
troller and for collecting displacement data.

The FPGA system (National Instruments cRIO-9002) is used to
implement the RC and PID controllers. The FPGA is programmed
using the NI LabVIEW FPGA Toolkit to generate executable VHDL
code that is downloaded to the target FPGA module for execution.
The coding and downloading process is illustrated in Fig. 8. The
FPGA system includes a real-time controller and 16-bit plug-in
modules for AI (Analog Input) and AO (Analog Output). The maxi-
mum sampling frequency for the FPGA’s data acquisition modules
is 100 kHz.
4.2. Linear dynamics modeling

As an illustrative example, the control method is applied to the
fast-scanning direction, x, of the nanopositioner. The linear dynam-
ics model G(s) for the x-axis is determined using a black-box iden-
tification technique. First, the frequency response of the
piezoactuator is measured using a dynamic signal analyzer. The re-
sponse is measured by driving the piezoactuator over a small dis-
placement range (<1 lm) to minimize hysteresis effect and above
100 Hz to avoid creep in the piezoactuator. Then, the response is
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Fig. 8. The experimental system and the FPGA coding process: the VHDL code is generated using LabVIEW FPGA Toolkit, then downloaded to the real-time controller through
an ethernet cable.
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curve-fitted in Matlab to a linear model, a 9th-order transfer func-
tion model G(s). Finally, the continuous-time model is converted to
a discrete-time model G(z) using the ‘c2d’ command in Matlab
with a sampling frequency of 100 kHz. The model and measured
response are in good agreement up to a frequency of 25 kHz, well
above the dominant resonance.

4.3. Hysteresis modeling

The P-I model is used to characterize the hysteresis behavior in
the piezoactuator along the x-axis. First, the hysteresis response is
measured by actuating the piezoactuator with a triangle input sig-
nal at 10 Hz, full range. The 10 Hz frequency is chosen to avoid the
creep effect and minimize the dynamics. Then the input voltage
u(t) and the response x(t) are collected and imported to Matlab
to a custom-designed least-square optimization program to calcu-
late the P-I parameters. The parameters include g0 and g1 for
f(t) = g0u(t) + g1; and k, d and q for density function d(c) = ke�dc,
where c = qj for j = 1, 2, . . . , n. The parameters of the P-I model
were identified as: g0 = 0.6081, g1 = 0.0039, k = 4.7649, d = 3.434
and q = 0.0769 with eight play operators j = 8. Finally, the hystere-
sis model is validated by comparing the model’s response with the
measured response as presented in Fig. 9. The maximum modeling
error is less than 1.87% and the root-mean-square of the error is
1.39%.

The hysteresis and dynamics model for the piezoactuator is cre-
ated by cascading the P-I model H½��with the linear dynamics mod-
el G(s). The open-loop response of the model is compared to the
measured open-loop response of the piezoactuator. The responses
are generated by applying a triangle input signal (100 Hz and
1 kHz) to the model and the experimental system such that the dis-
placement is ± 5 lm. The results are shown in Fig. 10 for the
100 Hz and 1 kHz responses. It is noted that the maximum error
between the model and measured response is less than 2% up to
a scanning frequency of 1 kHz. Therefore, the cascade model struc-
ture based on the P-I model is relatively accurate for modeling the
combined hysteresis and dynamic effects in the piezoactuator.
5. Controller designs and tracking results

5.1. Dual-RC controller design and implementation

The design and implementation of the dual-RC begins with the
design of the PID controller. The PID controller transfer function is
given by GcðzÞ ¼ Kp þ Ki

z
z�1þ Kd

z�1
z , and the controller gains are

tuned experimentally, with the initial values obtained using the
Ziegler-Nichols method. The gains are Kp = 1.1, Ki = 0.5, and Kd = 4
with a sampling frequency of 100 kHz.

The two RC controllers, C1 and C2 (see Fig. 2b), are designed
independently. First, C1 is designed using the following steps: (1)
design the low-pass filter Q(z) for stability, (2) pick the RC gain,
k1, to satisfy the stability condition in Theorem 2, and (3) design
the phase lead compensator P1(z) to minimize the steady-state
tracking error. Then the same process is applied to design C2. A sys-
tematic approach to design the RC gain and phase lead values are
describe in [7]. Afterwards, C1 and C2 are cascaded together to cre-
ate the dual-RC system, and subsequently the RC gains k1 and k2

are further adjusted for optimum tracking performance.
Step 1. The low-pass filters Q(z) in both RC’s are chosen as a

first-order filter for convenience, i.e., Q(z) = a/(z + b) with
jaj + jbj = 1. The cutoff frequency is selected based on the stability
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condition given in Eq. (10) to ensure that the phase of the closed-
loop system without the RCs falls between �p/9 6 hT(x) 6 p/9, for
x 2 (0,p/Ts). Using the linear dynamics model G(z) and the PID
controller Gc(z), the frequency where hT(x) becomes larger than
±p/9 is approximately 1.3 kHz as shown in Fig. 11. However, it is
pointed out that the condition given in Eq. (10) may be conserva-
tive, and thus simulations are performed to determine a more
practical cutoff frequency for high-speed positioning. Through sim-
ulation, the maximum cutoff frequency is found to be 7.5 kHz, and
above that the RC system becomes unstable. Therefore the cutoff
frequency of the low-pass filter is selected as 7 kHz.

Steps 2 and 3. The RC gain k1 and phase lead compensator
P1ðzÞ ¼ zm1 are determined by simulating the RC control system
for tracking a 1.5 kHz triangle reference trajectory. Firstly, the
maximum tracking error is defined as
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for the phase lead compensator P1ðzÞ ¼ zm1 . (c) The details of the steady-state tracking
emaxð%Þ ¼
max jyðtÞ � rðtÞj

maxðrðtÞÞ �minðrðtÞÞ

� �
� 100%;

where r and y are the reference and measured output, respectively.
The RC gain is selected as k1 = 0.8 by observing the smallest maxi-
mum tracking error in simulation. The value for m1 is then deter-
mined using the same method with k1 = 0.8. The maximum
steady-state tracking error for different values of m1 is presented
in Fig. 12a. The optimum value for m1 to provide the lowest stea-
dy-state tracking error is determined to be m1 = 6. Likewise, for
C2, the values are k2 = 1.2 and m2 = 6.

The controllers C1 and C2 are combined to create the dual-RC
system as depicted in Fig. 2. Finally, the RC gains are further tuned
in simulation to k1 = 0.8 and k2 = 1.1 for optimum performance.

5.2. Inverse hysteresis compensator

The inverse hysteresis model for compensating hysteresis is gi-
ven by Eq. (21). The density function is chosen as dinv ðc0Þ ¼ k0e�d0c0 ,
and the threshold c0 = q0j for j = 1, 2, . . . , 8. The parameters
g00; g01; k

0; d0, and q0 are determined using the measured input–out-
put data from the forward hysteresis model. The process follows
the same steps used to calculate the parameters for the (forward)
P-I hysteresis model, where a nonlinear least-square optimization
program is applied to determine the parameters as g00 ¼ 1:4583;
g01 ¼ �0:0181; k0 ¼ 1:4505; d0 ¼ 2:5001, and q0 = 0.1611.
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The inverse-hysteresis curve is shown in Fig. 13a and its time-
response is compared to the measured hysteresis response in
Fig. 13b. The H�1 model is applied to compensate for hysteresis
in the x-axis actuator of the experimental system at different fre-
quencies to investigate its effectiveness. Fig. 14a and b shows the
performance of H�1 for tracking a desired triangle trajectory at
10 Hz. The H�1 compensates for the hysteresis effect, and subse-
quently linearizes the system and makes the system’s output track
the reference trajectory, where the maximum tracking error is 2.1%
at 10 Hz. The performance of H�1 is further compared to the output
response of the dynamic model G(z) in simulation for tracking tri-
angle trajectories at 100 Hz and 1 kHz, since, by compensating for
the hysteresis, the output response is dominated by the dynamics
effect of G(z). Fig. 15 shows the measured and simulated output
versus input plots, where the maximum error is less than 0.92%
at 1 kHz. The results show that the hysteresis effect can be effec-
tively compensated for using the proposed inverse model.
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5.3. Tracking results and discussion

Experiments are performed on the x-axis piezoactuator of the
high-speed scanner to verify the effectiveness of the dual-RC on
improving the tracking performance compared to traditional PID
and conventional RC for tracking triangle trajectories at 1 kHz,
1.5 kHz, and 2 kHz over a 10 lm displacement range. An example
tracking result at 1 kHz is presented in Fig. 16. The result compares
the tracking performance of the dual-RC to PID control and the
conventional RC. Fig. 16b shows the tracking error for each control-
ler and Fig. 16c shows a snapshot of the steady-state tracking per-
formance. The tracking errors are summarized in Table 1,
particularly the table shows the maximum tracking error (emax)
and the root-mean-square tracking error (erms). The root-mean-
square error is given by:

ermsð%Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

R T
0 ½jyðtÞj � jrðtÞj�

2dt
q
maxðrðtÞÞ �minðrðtÞÞ � 100%;

where T is the signal period time. It is readily seen that the dual-RC
provides better performance compared to the conventional RC. In
fact, the improvement in tracking precision compared to tradition-
ally-used PID control is over 85%, and to conventional RC is over 48%
at 1 kHz, underscoring the benefits of the dual-RC structure.

It is pointed out that if the PID controller is designed around
the linear dynamics model (with Kp = 1.3, Ki = 0.5, and Kd = 4),
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Table 1
Experimental steady-state tracking error for different controllers.

Controller emax (%) erms (%)

1 kHz 1.5 kHz 2 kHz 1 kHz 1.5 kHz 2 kHz

PID 17.54 22.46 29.40 14.73 18.87 24.71
PIDþ conventional RC 4.02 4.36 7.23 1.39 2.07 4.19
PIDþ dual� RC 2.07 2.91 4.70 0.94 1.07 2.37
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simulation shows that the closed-loop system is stable (Fig. 17a).
On the other hand, the experimental implementation of the same
controller may differ due to the effects of hysteresis. The perfor-
mance of the H�1 on reducing the effect of hysteresis to improve
closed-loop performances is investigated in simulation. Simulation
results are provided due to the limited memory space in the FPGA
hardware for implementing the combined PID, RC, and H�1 com-
pensator. Particularly, the size of the VHDL codes for the dual-RC
combined with H�1 is larger than the allowable memory space of
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Table 2
Steady-state tracking error for different controllers.

Controller emax (%) erms (%)

1 kHz 1.5 kHz 2 kHz 1 kHz 1.5 kHz 2 kHz

PIDþH�1 11.38 17.02 22.93 10.21 17.61 25.80

PIDþ conv: RCþH�1 2.04 2.57 5.73 0.58 1.22 3.69

PIDþ dual� RCþH�1 1.08 1.75 2.63 0.42 0.69 1.84
the FPGA hardware. However, it is pointed out that for low-speed
operation, the Matlab xPC Target environment can be used to
implement the full control system. For faster operation, FPGA
hardware with more memory space can be used.

The simulation results for the regular PID, conventional RC, and
dual-RC with H�1 for tracking triangle trajectories at 1 kHz,
1.5 kHz, and 2 kHz are summarized in Table 2. Fig. 18 shows the
performance of the dual-RC, conventional RC, and the PID control-
ler with the H�1 at 1 kHz tracking. From the table it can be seen
that this process linearizes the plant and the dual-RC enhances
the performance of the conventional RC. Hence, the H�1 can reduce
the effect of hysteresis on the stability of the RC systems designed
around the linear dynamics.
6. Conclusions

Motion control of piezo-based nanopositioning systems is lim-
ited by the effects of dynamics and hysteresis. A dual-stage repet-
itive controller was combined with an inverse hysteresis
compensator to address tracking errors due to dynamic and hyster-
esis effects. Specifically, a dual-stage RC was employed which con-
sisted of a signal generator designed to provide high gains at the
fundamental and the harmonics of the reference trajectory and an-
other that offered high gain only at the odd harmonics. An inverse
hysteresis compensator was developed based on the structure of
the Prandtl–Ishlinskii hysteresis model to linearize the system to
enhance the performance of the dual-RC. An analysis was pre-
sented for the stability of the dual-RC closed-loop system and
the details of the inverse P-I model were discussed. Finally, simu-
lation and experimental results were provided to illustrate the per-
formance improvement of the proposed control scheme compared
to conventional RC and industry-standard PID control. The tracking
results showed that the inverse hysteresis compensator reduced
the hysteresis effect and helped to stabilize the repetitive con-
trolled system. It was also shown that the dual-RC structure re-
duced the maximum steady-state error compared to
conventional RC by approximately 48% (at 1 kHz) and 33% (at
2 kHz). These results demonstrate the benefits of the dual-RC
structure and the inverse hysteresis compensator for piezo-based
positioning systems.
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